The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On Davis-Januszkiewicz homotopy types I: formality and rationalisation.”

Cochains and homotopy type

Michael A. Mandell (2006)

Publications Mathématiques de l'IHÉS

Similarity:

Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as E algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of E algebras is faithful but not full.

A proof of the Baues-Lemaire conjecture in rational homotopy theory

Majewski, Martin

Similarity:

This paper contains an announcement of a result, which settles the connection between various algebraic models for rational homotopy theory: the models of Quillen, Sullivan and Adams-Hilton-Anick. It is shown how this result, combined with a recent result of Anick, implies a conjecture of and [Math. Ann. 225, 219-245 (1977; Zbl 0322.55019)].We describe in some detail the construction of these models (Section 1). We present a variant of the Adams-Hilton model, which is defined in a...

Exploring W.G. Dwyer's tame homotopy theory.

Hans Scheerer, Daniel Tanré (1991)

Publicacions Matemàtiques

Similarity:

Let S be the category of r-reduced simplicial sets, r ≥ 3; let L be the category of (r-1)-reduced differential graded Lie algebras over Z. According to the fundamental work [3] of W.G. Dwyer both categories are endowed with closed model category structures such that the associated tame homotopy category of S is equivalent to the associated homotopy category of L. Here we embark on a study of this equivalence and its implications. In particular, we show how to compute homology, cohomology,...