The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Comparison theorems for small deviations of random series.”

Moderate deviations for I.I.D. random variables

Peter Eichelsbacher, Matthias Löwe (2003)

ESAIM: Probability and Statistics

Similarity:

We derive necessary and sufficient conditions for a sum of i.i.d. random variables i = 1 n X i / b n – where b n n 0 , but b n n – to satisfy a moderate deviations principle. Moreover we show that this equivalence is a typical moderate deviations phenomenon. It is not true in a large deviations regime.

Quenched limits for transient, ballistic, sub-gaussian one-dimensional random walk in random environment

Jonathon Peterson (2009)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a nearest-neighbor, one-dimensional random walk { } in a random i.i.d. environment, in the regime where the walk is transient with speed >0 and there exists an ∈(1, 2) such that the annealed law of ( − ) converges to a stable law of parameter . Under the quenched law (i.e., conditioned on the environment), we show that no limit laws are possible. In particular we show that there exist sequences...