Displaying similar documents to “Limit points of lines of minima in Thurston's boundary of Teichmüller space.”

Continuity of the bending map

Cyril Lecuire (2008)

Annales de la faculté des sciences de Toulouse Mathématiques


The bending map of a hyperbolic 3 -manifold maps a convex cocompact hyperbolic metric on a 3 -manifold with boundary to its bending measured geodesic lamination. As proved in [KeS] and [KaT], this map is continuous. In the present paper we study the extension of this map to the space of geometrically finite hyperbolic metrics. We introduce a relationship on the space of measured geodesic laminations and show that the quotient map obtained from the bending map is continuous.

Short separating geodesics for multiply connected domains

Mark Comerford (2011)

Open Mathematics


We consider the following questions: given a hyperbolic plane domain and a separation of its complement into two disjoint closed sets each of which contains at least two points, what is the shortest closed hyperbolic geodesic which separates these sets and is it a simple closed curve? We show that a shortest geodesic always exists although in general it may not be simple. However, one can also always find a shortest simple curve and we call such a geodesic a meridian of the domain. We...