The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the second sectional geometric genus of quasi-polarized manifolds.”

Seshadri positive submanifolds of polarized manifolds

Lucian Bădescu, Mauro Beltrametti (2013)

Open Mathematics

Similarity:

Let Y be a submanifold of dimension y of a polarized complex manifold (X, A) of dimension k ≥ 2, with 1 ≤ y ≤ k−1. We define and study two positivity conditions on Y in (X, A), called Seshadri A-bigness and (a stronger one) Seshadri A-ampleness. In this way we get a natural generalization of the theory initiated by Paoletti in [Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4),...

On the k-regularity of some proyective manifolds.

Alberto Alzati, Gian Mario Besana (1998)

Collectanea Mathematica

Similarity:

The conjecture on the (degree-codimension + 1) - regularity of projective varieties is proved for smooth linearly normal polarized varieties (X,L) with L very ample, for low values of Delta(X,L) = degree-codimension-1. Results concerning the projective normality of some classes of special varieties including scrolls over curves of genus 2 and quadric fibrations over elliptic curves, are proved.