Displaying similar documents to “Commensurations of the Johnson kernel.”

A lantern lemma.

Margalit, Dan (2002)

Algebraic & Geometric Topology

Similarity:

Descent via (3,3)-isogeny on Jacobians of genus 2 curves

Nils Bruin, E. Victor Flynn, Damiano Testa (2014)

Acta Arithmetica

Similarity:

We give a parametrization of curves C of genus 2 with a maximal isotropic (ℤ/3)² in J[3], where J is the Jacobian variety of C, and develop the theory required to perform descent via (3,3)-isogeny. We apply this to several examples, where it is shown that non-reducible Jacobians have non-trivial 3-part of the Tate-Shafarevich group.

Mapping class group of a handlebody

Bronisław Wajnryb (1998)

Fundamenta Mathematicae

Similarity:

Let B be a 3-dimensional handlebody of genus g. Let ℳ be the group of the isotopy classes of orientation preserving homeomorphisms of B. We construct a 2-dimensional simplicial complex X, connected and simply-connected, on which ℳ acts by simplicial transformations and has only a finite number of orbits. From this action we derive an explicit finite presentation of ℳ.

Some examples of Gorenstein liaison in codimension three.

Robin Hartshorne (2002)

Collectanea Mathematica

Similarity:

Gorenstein liaison seems to be the natural notion to generalize to higher codimension the well-known results about liaison of varieties of codimension 2 in projective space. In this paper we study points in P3 and curves in P4 in an attempt to see how far typical codimension 2 results will extend. While the results are satisfactory for small degree, we find in each case examples where we cannot decide the outcome. This examples are candidates for counterexamples to the hoped-for extensions...