Displaying similar documents to “Some properties of the discontinuous Galerkin method for one-dimensional singularly perturbed problems.”

A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems

Josef Dalík (1991)

Applications of Mathematics

Similarity:

A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation are presented and analyzed theoretically. The positive number is supposed to be much less than the discretization step and the values of . An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.

Error estimates for linear finite elements on Bakhvalov-type meshes

Hans-Görg Roos (2006)

Applications of Mathematics

Similarity:

For convection-diffusion problems with exponential layers, optimal error estimates for linear finite elements on Shishkin-type meshes are known. We present the first optimal convergence result in an energy norm for a Bakhvalov-type mesh.

Opposing flows in a one dimensional convection-diffusion problem

Eugene O’Riordan (2012)

Open Mathematics

Similarity:

In this paper, we examine a particular class of singularly perturbed convection-diffusion problems with a discontinuous coefficient of the convective term. The presence of a discontinuous convective coefficient generates a solution which mimics flow moving in opposing directions either side of some flow source. A particular transmission condition is imposed to ensure that the differential operator is stable. A piecewise-uniform Shishkin mesh is combined with a monotone finite difference...

The combination technique for a two-dimensional convection-diffusion problem with exponential layers

Sebastian Franz, Fang Liu, Hans-Görg Roos, Martin Stynes, Aihui Zhou (2009)

Applications of Mathematics

Similarity:

Convection-diffusion problems posed on the unit square and with solutions displaying exponential layers are solved using a sparse grid Galerkin finite element method with Shishkin meshes. Writing for the maximum number of mesh intervals in each coordinate direction, our “combination” method simply adds or subtracts solutions that have been computed by the Galerkin FEM on , and meshes. It is shown that the combination FEM yields (up to a factor ) the same order of accuracy in...