Displaying similar documents to “Shock capturing and related numerical methods in computational fluid dynamics.”

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical...

A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems

Thierry Gallouët, Jean-Marc Hérard, Nicolas Seguin (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The present paper is devoted to the computation of single phase or two phase flows using the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density...

Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint

Florent Berthelin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We study in this paper some numerical schemes for hyperbolic systems with unilateral constraint. In particular, we deal with the scalar case, the isentropic gas dynamics system and the full-gas dynamics system. We prove the convergence of the scheme to an entropy solution of the isentropic gas dynamics with unilateral constraint on the density and mass loss. We also study the non-trivial steady states of the system.

The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems

Edwige Godlewski, Kim-Claire Le Thanh, Pierre-Arnaud Raviart (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann...

Convergence of implicit Finite Volume methods for scalar conservation laws with discontinuous flux function

Sébastien Martin, Julien Vovelle (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper deals with the problem of numerical approximation in the Cauchy-Dirichlet problem for a scalar conservation law with a flux function having finitely many discontinuities. The well-posedness of this problem was proved by Carrillo [  (2003) 687–705]. Classical numerical methods do not allow us to compute a numerical solution (due to the lack of regularity of the flux). Therefore, we propose an implicit Finite Volume method based on an equivalent formulation of the initial problem....

Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint

Florent Berthelin (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We study in this paper some numerical schemes for hyperbolic systems with unilateral constraint. In particular, we deal with the scalar case, the isentropic gas dynamics system and the full-gas dynamics system. We prove the convergence of the scheme to an entropy solution of the isentropic gas dynamics with unilateral constraint on the density and mass loss. We also study the non-trivial steady states of the system.

Finite-volume solvers for a multilayer Saint-Venant system

Emmanuel Audusse, Marie-Odile Bristeau (2007)

International Journal of Applied Mathematics and Computer Science

Similarity:

We consider the numerical investigation of two hyperbolic shallow water models. We focus on the treatment of the hyperbolic part. We first recall some efficient finite volume solvers for the classical Saint-Venant system. Then we study their extensions to a new multilayer Saint-Venant system. Finally, we use a kinetic solver to perform some numerical tests which prove that the 2D multilayer Saint-Venant system is a relevant alternative to D hydrostatic Navier-Stokes equations. ...

An entropy-correction free solver for non-homogeneous shallow water equations

Tomás Chacón Rebollo, Antonio Domínguez Delgado, Enrique D. Fernández Nieto (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.