An entropy-correction free solver for non-homogeneous shallow water equations

Tomás Chacón Rebollo; Antonio Domínguez Delgado; Enrique D. Fernández Nieto

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2003)

  • Volume: 37, Issue: 5, page 755-772
  • ISSN: 0764-583X

Abstract

top
In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.

How to cite

top

Rebollo, Tomás Chacón, Delgado, Antonio Domínguez, and Fernández Nieto, Enrique D.. "An entropy-correction free solver for non-homogeneous shallow water equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.5 (2003): 755-772. <http://eudml.org/doc/245388>.

@article{Rebollo2003,
abstract = {In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.},
author = {Rebollo, Tomás Chacón, Delgado, Antonio Domínguez, Fernández Nieto, Enrique D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite volume method; upwinding; shallow water; Harten regularization; source terms; entropy-correction; generalized conservation form; finite volume solvers},
language = {eng},
number = {5},
pages = {755-772},
publisher = {EDP-Sciences},
title = {An entropy-correction free solver for non-homogeneous shallow water equations},
url = {http://eudml.org/doc/245388},
volume = {37},
year = {2003},
}

TY - JOUR
AU - Rebollo, Tomás Chacón
AU - Delgado, Antonio Domínguez
AU - Fernández Nieto, Enrique D.
TI - An entropy-correction free solver for non-homogeneous shallow water equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 5
SP - 755
EP - 772
AB - In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.
LA - eng
KW - finite volume method; upwinding; shallow water; Harten regularization; source terms; entropy-correction; generalized conservation form; finite volume solvers
UR - http://eudml.org/doc/245388
ER -

References

top
  1. [1] A. Bermudez, A. Dervieux, J.A. Desideri and M.E.V. Cendón, Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Engrg. 155 (1998) 49–72. Zbl0961.76047
  2. [2] A. Bermúdez and M.E.V. Cendón, Upwind Methods for Hyperbolic Conservation Laws with Source Terms. Comput. & Fluids 23 (1994) 1049–1071. Zbl0816.76052
  3. [3] F. Bouchut, An introduction to finite volume methods for hyperbolic systems of conservation laws with source, Actas Ecole CEA – EDF – INRIA, Free surface geophysical flows, 7–10 Octobre, INRIA Rocquencourt, France (2002). 
  4. [4] F. Dubois and G. Mehlman, A non-parameterized entropy correction for Roe’s approximate Riemann solver. Numer. Math. 73 (1996) 169–208. Zbl0861.65073
  5. [5] P. Brufau, Simulación bidimensional de flujos hidrodinámicos transitorios en gemotrías irregulares. Ph.D. thesis Universidad de Zaragoza (2000). 
  6. [6] T.C. Rebollo, E.D.F. Nieto and M.G. Mármol, A flux-splitting solver for shallow watter equations with source terms. Int. J. Num. Methods Fluids 42 (2003) 23–55. Zbl1033.76033
  7. [7] T.C. Rebollo, A.D. Delgado and E.D.F. Nieto, A family of stable numerical solvers for Shallow Water equations with source terms. Comput. Methods Appl. Mech. Engrg. 192 (2003) 203–225. Zbl1083.76557
  8. [8] T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. & Fluids 32 (2003) 479–513. Zbl1084.76540
  9. [9] E. Godlewski and P.A. Raviart, Hyperbolic systems of conservation laws. Math. Appl. (1991). Zbl0768.35059MR1304494
  10. [10] E. Godlewski and P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, Verlag (1996). Zbl0860.65075MR1410987
  11. [11] A. Harten, P. Lax and A. Van Leer, On upstream differencing and Godunov-type scheme for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35. Zbl0565.65051MR693713
  12. [12] S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms. M2AN Math. Model. Numer. Anal. 35 (2001) 631–645. Zbl1001.35083
  13. [13] A. Kurganov and D. Levy, Central-upwind schemes for the saint-venant system. M2AN Math. Model. Numer. Anal. 36 (2002) 397–425. Zbl1137.65398
  14. [14] A. Kurganov and E. Tadmor, New High-Resolution Central Schemes for Nonlinear Conservations Laws and Convection-Diffusion Equations. J. Comput. Phys. 160 (2000) 214–282. Zbl0987.65085
  15. [15] Le Veque and H.C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comput. Phys. 86 (1990) 187–210. Zbl0682.76053
  16. [16] Le Veque, Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm. J. Comp. Phys. 146 (1998) 346–365. Zbl0931.76059
  17. [17] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201–231. Zbl1008.65066
  18. [18] P.L. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms. Nonlinear Hyperbolic Problems, C. Carraso, P.A. Raviart and D. Serre, Eds., Springer-Verlag, Lecture Notes in Math. 1270 (1986) 41–51. Zbl0626.65086
  19. [19] E F. Toro., Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer (1997). Zbl0801.76062MR1474503
  20. [20] M.E.V. Cendon, Estudio de esquemas descentrados para su aplicacion a las leyes de conservación hiperbólicas con términos fuente. Ph.D. thesis, Universidad de Santiago de Compostela (1994). 
  21. [21] M.E.V. Cendón, Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry. J. Comp. Phys. 148 (1999) 497–526. Zbl0931.76055
  22. [22] J.P. Vila, High-order schemes and entropy condition for nonlinear hyperbolic systems of conservations laws. Math. Comp. 50 (1988) 53–73. Zbl0644.65058
  23. [23] J.G. Zhou, D.M. Causon, C.G. Mingham and D.M. Ingram, The Surface Gradient Method for the Treatment of Source Terms in the Sallow-Water Equations. J. Comput. Phys. 168 (2001) 1–25. Zbl1074.86500

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.