Displaying similar documents to “Character sums and Ramsey properties of generalized Paley graphs.”

Two Graphs with a Common Edge

Lidia Badura (2014)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = G1 ∪ G2 be the sum of two simple graphs G1,G2 having a common edge or G = G1 ∪ e1 ∪ e2 ∪ G2 be the sum of two simple disjoint graphs G1,G2 connected by two edges e1 and e2 which form a cycle C4 inside G. We give a method of computing the determinant det A(G) of the adjacency matrix of G by reducing the calculation of the determinant to certain subgraphs of G1 and G2. To show the scope and effectiveness of our method we give some examples

On magic and supermagic line graphs

Jaroslav Ivančo, Z. Lastivková, A. Semaničová (2004)

Mathematica Bohemica

Similarity:

A graph is called magic (supermagic) if it admits a labelling of the edges by pairwise different (consecutive) positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. We characterize magic line graphs of general graphs and describe some class of supermagic line graphs of bipartite graphs.

On supermagic regular graphs

Jaroslav Ivančo (2000)

Mathematica Bohemica

Similarity:

A graph is called supermagic if it admits a labelling of the edges by pairwise different consecutive positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. Some constructions of supermagic labellings of regular graphs are described. Supermagic regular complete multipartite graphs and supermagic cubes are characterized.