The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “GCD of truncated rows in Pascal's triangle.”

Square-free Lucas d -pseudoprimes and Carmichael-Lucas numbers

Walter Carlip, Lawrence Somer (2007)

Czechoslovak Mathematical Journal

Similarity:

Let d be a fixed positive integer. A Lucas d -pseudoprime is a Lucas pseudoprime N for which there exists a Lucas sequence U ( P , Q ) such that the rank of N in U ( P , Q ) is exactly ( N - ε ( N ) ) / d , where ε is the signature of U ( P , Q ) . We prove here that all but a finite number of Lucas d -pseudoprimes are square free. We also prove that all but a finite number of Lucas d -pseudoprimes are Carmichael-Lucas numbers.

On the composition factors of a group with the same prime graph as B n ( 5 )

Azam Babai, Behrooz Khosravi (2012)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group. The prime graph of G is a graph whose vertex set is the set of prime divisors of | G | and two distinct primes p and q are joined by an edge, whenever G contains an element of order p q . The prime graph of G is denoted by Γ ( G ) . It is proved that some finite groups are uniquely determined by their prime graph. In this paper, we show that if G is a finite group such that Γ ( G ) = Γ ( B n ( 5 ) ) , where n 6 , then G has a unique nonabelian composition factor isomorphic to B n ( 5 ) or C n ( 5 ) .