A note on graph coloring extensions and list-colorings.
Axenovich, Maria (2003)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Axenovich, Maria (2003)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Axenovich, Maria, Martin, Ryan (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Caro, Yair, Yuster, Raphael (2003)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Nedialkov, Evgeni, Nenov, Nedyalko (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Yuster, Raphael (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Timmons, Craig (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Jean-Sébastien Sereni, Zelealem B. Yilma (2013)
Discussiones Mathematicae Graph Theory
Similarity:
We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that χs(G) > ⌈log2 χ(G)⌉ + 1, where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
Wayne Goddard, Honghai Xu (2016)
Discussiones Mathematicae Graph Theory
Similarity:
Given a coloring of the vertices of a graph G, we say a subgraph is rainbow if its vertices receive distinct colors. For a graph F, we define the F-upper chromatic number of G as the maximum number of colors that can be used to color the vertices of G such that there is no rainbow copy of F. We present some results on this parameter for certain graph classes. The focus is on the case that F is a star or triangle. For example, we show that the K3-upper chromatic number of any maximal...
Caro, Y., Krasikov, I., Roditty, Y. (1994)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Alon, Noga, Sudakov, Benny (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Fischer, Eldar (1999)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Collins, Karen L., Trenk, Ann N. (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Wayne Goddard, Kirsti Wash, Honghai Xu (2015)
Discussiones Mathematicae Graph Theory
Similarity:
Given a coloring of the vertices, we say subgraph H is monochromatic if every vertex of H is assigned the same color, and rainbow if no pair of vertices of H are assigned the same color. Given a graph G and a graph F, we define an F-WORM coloring of G as a coloring of the vertices of G without a rainbow or monochromatic subgraph H isomorphic to F. We present some results on this concept especially as regards to the existence, complexity, and optimization within certain graph classes....