Displaying similar documents to “On the occupation measure of super-Brownian motion.”

Minimal thinness for subordinate Brownian motion in half-space

Panki Kim, Renming Song, Zoran Vondraček (2012)

Annales de l’institut Fourier

Similarity:

We study minimal thinness in the half-space H : = { x = ( x ˜ , x d ) : x ˜ d - 1 , x d > 0 } for a large class of subordinate Brownian motions. We show that the same test for the minimal thinness of a subset of H below the graph of a nonnegative Lipschitz function is valid for all processes in the considered class. In the classical case of Brownian motion this test was proved by Burdzy.

On the Newcomb-Benford law in models of statistical data.

Tomás Hobza, Igor Vajda (2001)

Revista Matemática Complutense

Similarity:

We consider positive real valued random data X with the decadic representation X = Σ D 10 and the first significant digit D = D(X) in {1,2,...,9} of X defined by the condition D = D ≥ 1, D = D = ... = 0. The data X are said to satisfy the Newcomb-Benford law if P{D=d} = log(d+1 / d) for all d in {1,2,...,9}. This law holds for example for the data with logX uniformly distributed on an interval (m,n) where m and n are integers. We show that if logX has a distribution...

On the local time of sub-fractional Brownian motion

Ibrahima Mendy (2010)

Annales mathématiques Blaise Pascal

Similarity:

S H = { S t H , t 0 } be a sub-fractional Brownian motion with H ( 0 , 1 ) . We establish the existence, the joint continuity and the Hölder regularity of the local time L H of S H . We will also give Chung’s form of the law of iterated logarithm for S H . This results are obtained with the decomposition of the sub-fractional Brownian motion into the sum of fractional Brownian motion plus a stochastic process with absolutely continuous trajectories. This decomposition is given by Ruiz de Chavez and Tudor []. ...