Displaying similar documents to “A new search model for evolutionary algorithms.”

Advances in parallel heterogeneous genetic algorithms for continuous optimization

Enrique Alba, Francisco Luna, Antonio Nebro (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper we address an extension of a very efficient genetic algorithm (GA) known as Hy3, a physical parallelization of the gradual distributed real-coded GA (GD-RCGA). This search model relies on a set of eight subpopulations residing in a cube topology having two faces for promoting exploration and exploitation. The resulting technique has been shown to yield very accurate results in continuous optimization by using crossover operators tuned to explore and exploit the solutions...

Parameter Identification of a Fed-Batch Cultivation of S. Cerevisiae using Genetic Algorithms

Angelova, Maria, Tzonkov, Stoyan, Pencheva, Tania (2010)

Serdica Journal of Computing

Similarity:

Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for...

Customized crossover in evolutionary sets of safe ship trajectories

Rafał Szłapczyński, Joanna Szłapczyńska (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents selected aspects of evolutionary sets of safe ship trajectories-a method which applies evolutionary algorithms and some of the assumptions of game theory to solving ship encounter situations. For given positions and motion parameters of the ships, the method finds a near optimal set of safe trajectories of all ships involved in an encounter. The method works in real time and the solutions must be returned within one minute, which enforces speeding up the optimisation...

Theoretical analysis of steady state genetic algorithms

Alexandru Agapie, Alden H. Wright (2014)

Applications of Mathematics

Similarity:

Evolutionary Algorithms, also known as Genetic Algorithms in a former terminology, are probabilistic algorithms for optimization, which mimic operators from natural selection and genetics. The paper analyses the convergence of the heuristic associated to a special type of Genetic Algorithm, namely the Steady State Genetic Algorithm (SSGA), considered as a discrete-time dynamical system non-generational model. Inspired by the Markov chain results in finite Evolutionary Algorithms, conditions...

The island model as a Markov dynamic system

Robert Schaefer, Aleksander Byrski, Maciej Smołka (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

Parallel multi-deme genetic algorithms are especially advantageous because they allow reducing the time of computations and can perform a much broader search than single-population ones. However, their formal analysis does not seem to have been studied exhaustively enough. In this paper we propose a mathematical framework describing a wide class of island-like strategies as a stationary Markov chain. Our approach uses extensively the modeling principles introduced by Vose, Rudolph and...