On Jordan type inequalities for hyperbolic functions.
Klén, R., Visuri, M., Vuorinen, M. (2010)
Journal of Inequalities and Applications [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Klén, R., Visuri, M., Vuorinen, M. (2010)
Journal of Inequalities and Applications [electronic only]
Similarity:
Li, Jian-Lin (2006)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Zhu, Ling (2009)
Abstract and Applied Analysis
Similarity:
Qi, Feng, Niu, Da-Wei, Guo, Bai-Ni (2009)
Journal of Inequalities and Applications [electronic only]
Similarity:
He Yuan, Liangyun Chen (2016)
Colloquium Mathematicae
Similarity:
We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.
J. Harkness (1893/94)
Bulletin of the New York Mathematical Society
Similarity:
Sara Shafiq, Muhammad Aslam (2017)
Open Mathematics
Similarity:
In this paper, the notions of Jordan homomorphism and Jordan derivation of inverse semirings are introduced. A few results of Herstein and Brešar on Jordan homomorphisms and Jordan derivations of rings are generalized in the setting of inverse semirings.
A. Moreno Galindo (1997)
Studia Mathematica
Similarity:
For = ℝ or ℂ we exhibit a Jordan-algebra norm ⎮·⎮ on the simple associative algebra with the property that Jordan polynomials over are precisely those associative polynomials over which act ⎮·⎮-continuously on . This analytic determination of Jordan polynomials improves the one recently obtained in [5].
Lotfi Riahi (2004)
Colloquium Mathematicae
Similarity:
We prove a new 3G-Theorem for the Laplace Green function G on an arbitrary Jordan domain D in ℝ². This theorem extends the recent one proved on a Dini-smooth Jordan domain.
Eberhard Neher (1979)
Mathematische Zeitschrift
Similarity:
Dilian Yang (2005)
Colloquium Mathematicae
Similarity:
Motivated by Problem 2 in [2], Jordan *-derivation pairs and n-Jordan *-mappings are studied. From the results on these mappings, an affirmative answer to Problem 2 in [2] is given when E = F in (1) or when 𝓐 is unital. For the general case, we prove that every Jordan *-derivation pair is automatically real-linear. Furthermore, a characterization of a non-normal prime *-ring under some mild assumptions and a representation theorem for quasi-quadratic functionals are provided. ...
Fangyan Lu (2009)
Studia Mathematica
Similarity:
We show that every Jordan isomorphism between CSL algebras is the sum of an isomorphism and an anti-isomorphism. Also we show that each Jordan derivation of a CSL algebra is a derivation.
A. Moreno Galindo, A. Rodríguez Palacios (1997)
Extracta Mathematicae
Similarity:
Holger P. Petersson, M.L. Racine (1983)
Manuscripta mathematica
Similarity:
Asadurian, Eduard (2001)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
M. Cabrera Garcia, A. Moreno Galindo, A. Rodríguez Palacios, E. Zel'manov (1996)
Studia Mathematica
Similarity:
We prove that there exists a real or complex central simple associative algebra M with minimal one-sided ideals such that, for every non-Jordan associative polynomial p, a Jordan-algebra norm can be given on M in such a way that the action of p on M becomes discontinuous.