The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Navier-Stokes equations with temperature-dependent transport coefficients.”

Planar flows of incompressible heat-conducting shear-thinning fluids — existence analysis

Miroslav Bulíček, Oldřich Ulrych (2011)

Applications of Mathematics

Similarity:

We study the flow of an incompressible homogeneous fluid whose material coefficients depend on the temperature and the shear-rate. For large class of models we establish the existence of a suitable weak solution for two-dimensional flows of fluid in a bounded domain. The proof relies on the reconstruction of the globally integrable pressure, available due to considered Navier’s slip boundary conditions, and on the so-called L -truncation method, used to obtain the strong convergence of...

On the exterior steady problem for the equations of a viscous isothermal gas

Mariarosaria Padula (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove existence and a representation formula for solutions to the equations describing steady flows of an isothermal, viscous, compressible gas having a positive infimum for the density ϱ , moving in an exterior domain, when the speed of the obstacle and the external forces are sufficiently small.

On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions

Miroslav Bulíček, Roger Lewandowski, Josef Málek (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we establish the large-data and long-time existence of a suitable weak solution to an initial and boundary value problem driven by a system of partial differential equations consisting of the Navier-Stokes equations with the viscosity ν polynomially increasing with a scalar quantity k that evolves according to an evolutionary convection diffusion equation with the right hand side ν ( k ) | 𝖣 ( v ) | 2 that is merely L 1 -integrable over space and time. We also formulate a conjecture concerning...