Galois module structure of Milnor -theory mod in characteristic .
Mináč, Ján, Schultz, Andrew, Swallow, John (2008)
The New York Journal of Mathematics [electronic only]
Similarity:
Mináč, Ján, Schultz, Andrew, Swallow, John (2008)
The New York Journal of Mathematics [electronic only]
Similarity:
D. J. Burns (1989)
Journal de théorie des nombres de Bordeaux
Similarity:
Cornelius Greither (2000)
Acta Mathematica et Informatica Universitatis Ostraviensis
Similarity:
Reza Ebrahimi Atani, Shahabaddin Ebrahimi Atani (2009)
Czechoslovak Mathematical Journal
Similarity:
First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication -modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.
Semra Öztürk Kaptanoǧlu (2010)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Charkani, M.E., Bouhamidi, S. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
G. D. Villa-Salvador, M. Rzedowski-Calderón (1997)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
For a prime number l and for a finite Galois l-extension of function fields L / K over an algebraically closed field of characteristic p <> l, it is obtained the Galois module structure of the generalized Jacobian associated to L, l and the ramified prime divisors. In the cyclic case an implicit integral representation of the Jacobian is obtained and this representation is compared with the explicit representation.