Galois module structure of Milnor -theory mod in characteristic .
Mináč, Ján, Schultz, Andrew, Swallow, John (2008)
The New York Journal of Mathematics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Mináč, Ján, Schultz, Andrew, Swallow, John (2008)
The New York Journal of Mathematics [electronic only]
Similarity:
D. J. Burns (1989)
Journal de théorie des nombres de Bordeaux
Similarity:
Cornelius Greither (2000)
Acta Mathematica et Informatica Universitatis Ostraviensis
Similarity:
Reza Ebrahimi Atani, Shahabaddin Ebrahimi Atani (2009)
Czechoslovak Mathematical Journal
Similarity:
First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication -modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.
Semra Öztürk Kaptanoǧlu (2010)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Charkani, M.E., Bouhamidi, S. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
G. D. Villa-Salvador, M. Rzedowski-Calderón (1997)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
For a prime number l and for a finite Galois l-extension of function fields L / K over an algebraically closed field of characteristic p <> l, it is obtained the Galois module structure of the generalized Jacobian associated to L, l and the ramified prime divisors. In the cyclic case an implicit integral representation of the Jacobian is obtained and this representation is compared with the explicit representation.