A posteriori error estimators for the Stokes equations II non-conforming discretizations.
R. Verfürth (1991/92)
Numerische Mathematik
Similarity:
R. Verfürth (1991/92)
Numerische Mathematik
Similarity:
Mark Ainsworth, Alan Craig (1991/92)
Numerische Mathematik
Similarity:
R. Durán, M.A. Muschietti, ... (1991)
Numerische Mathematik
Similarity:
E. Dari, R. Duran, C. Padra, V. Vampa (1996)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
Pengzhan Huang, Qiuyu Zhang (2020)
Applications of Mathematics
Similarity:
A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem.
Burda, Pavel, Hasal, Martin
Similarity:
We derive a residual based a posteriori error estimate for the Stokes-Brinkman problem on a two-dimensional polygonal domain. We use Taylor-Hood triangular elements. The link to the possible information on the regularity of the problem is discussed.
T.A. Porsching (1977/1978)
Numerische Mathematik
Similarity: