On General Hermite Trigonometric Interpolation.
Rainer Kreß (1972/73)
Numerische Mathematik
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Rainer Kreß (1972/73)
Numerische Mathematik
Similarity:
M. Gasca, J.I. Maeztu (1982)
Numerische Mathematik
Similarity:
Phung Van Manh (2015)
Annales Polonici Mathematici
Similarity:
We give a new poised bivariate Hermite scheme and a formula for the interpolation polynomial. We show that the Hermite interpolation polynomial is the limit of bivariate Lagrange interpolation polynomials at Bos configurations on circles.
Branga, Adrian (1998)
General Mathematics
Similarity:
G. Mühlbach (1981)
Numerische Mathematik
Similarity:
Lorentz, Rudolph Alexander (1990)
Mathematische Zeitschrift
Similarity:
G. BIRKHOFF, R.S. VARGA, M.H. SCHULTZ (1968)
Numerische Mathematik
Similarity:
D. Braess (1974)
Numerische Mathematik
Similarity:
S. Hartman (1968)
Colloquium Mathematicae
Similarity:
Charles K:, Diamond, Harvey Chui (1990/91)
Numerische Mathematik
Similarity:
J.H. BRAMBLE, S.R. HILBERT (1970/71)
Numerische Mathematik
Similarity:
Wolfgang Drols (1980)
Mathematische Zeitschrift
Similarity:
Šolín, Pavel, Segeth, Karel
Similarity:
Interpolation on finite elements usually occurs in a Hilbert space setting, which means that interpolation techniques involving orthogonal projection are an alternative for the traditional Lagrange nodal interpolation schemes. In addition to the Lagrange interpolation, this paper discusses the global orthogonal projection and the projection-based interpolation. These techniques are compared from the point of view of quality, efficiency, sensitivity to input parameters and other aspects....