Resolvent estimates for Schrödinger operators in L (R ) and the theory of exponentially bounded C-semigroups.
M.H.H. Pang (1990)
Semigroup forum
Similarity:
M.H.H. Pang (1990)
Semigroup forum
Similarity:
Laurent Thomann (2009)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
S. A. Denisov (2010)
Mathematical Modelling of Natural Phenomena
Similarity:
In this short note, we apply the technique developed in [Math. Model. Nat. Phenom., 5 (2010), No. 4, 122-149] to study the long-time evolution for Schrödinger equation with slowly decaying potential.
Arne Jensen (1986)
Mathematische Zeitschrift
Similarity:
Mejjaoli, H. (2009)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 35Q55,42B10. In this paper, we study the Schrödinger equation associated with the Dunkl operators, we study the dispersive phenomena and we prove the Strichartz estimates for this equation. Some applications are discussed.
Giuseppe Maria Coclite (2002)
Annales Polonici Mathematici
Similarity:
We prove the existence of a sequence of radial solutions with negative energy of the Schrödinger-Maxwell equations under the action of a negative potential.
Luis Escauriaza, Carlos E. Kenig, G. Ponce, Luis Vega (2008)
Journal of the European Mathematical Society
Similarity:
We prove the logarithmic convexity of certain quantities, which measure the quadratic exponential decay at infinity and within two characteristic hyperplanes of solutions of Schrödinger evolutions. As a consequence we obtain some uniqueness results that generalize (a weak form of) Hardy’s version of the uncertainty principle. We also obtain corresponding results for heat evolutions.
Tohru Ozawa, Jian Zhai (2008)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Arne Jensen (1994)
Mathematische Annalen
Similarity:
Zhengping Wang, Huan-Song Zhou (2009)
Journal of the European Mathematical Society
Similarity:
Reika Fukuizumi, Masahito Ohta, Tohru Ozawa (2008)
Annales de l'I.H.P. Analyse non linéaire
Similarity: