Global existence of small classical solutions to nonlinear Schrödinger equations

Tohru Ozawa; Jian Zhai

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 2, page 303-311
  • ISSN: 0294-1449

How to cite

top

Ozawa, Tohru, and Zhai, Jian. "Global existence of small classical solutions to nonlinear Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 303-311. <http://eudml.org/doc/78790>.

@article{Ozawa2008,
author = {Ozawa, Tohru, Zhai, Jian},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equations; Schrödinger maps; Cauchy problem; small solutions},
language = {eng},
number = {2},
pages = {303-311},
publisher = {Elsevier},
title = {Global existence of small classical solutions to nonlinear Schrödinger equations},
url = {http://eudml.org/doc/78790},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Ozawa, Tohru
AU - Zhai, Jian
TI - Global existence of small classical solutions to nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 303
EP - 311
LA - eng
KW - nonlinear Schrödinger equations; Schrödinger maps; Cauchy problem; small solutions
UR - http://eudml.org/doc/78790
ER -

References

top
  1. [1] Cazenave T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, 2003. Zbl1055.35003MR2002047
  2. [2] Chang N.-H., Shatah J., Uhlenbeck K., Schrödinger maps, Comm. Pure Appl. Math.53 (2003) 590-602. Zbl1028.35134MR1737504
  3. [3] Chihara H., Global existence of small solutions to semilinear Schrödinger equations with gauge invariance, Publ. RIMS31 (5) (1995) 731-753. Zbl0847.35126MR1367670
  4. [4] Chihara H., The initial value problem for cubic semilinear Schrödinger equations, Publ. RIMS32 (3) (1996) 445-471. Zbl0870.35095MR1409797
  5. [5] Ginibre J., Introduction aux équations de Schrödinger non linéaires, Paris Onze Edition, Université Paris-Sud, 1998, L161. 
  6. [6] Hayashi N., Hirata H., Local existence in time of small solutions to the elliptic–hyperbolic Davey–Stewartson system in the usual Sobolev space, Proc. Edinburgh Math. Soc.40 (1997) 563-581. Zbl0910.35113MR1475917
  7. [7] Hayashi N., Kaikina E.I., Local existence of solutions to the Cauchy problem for nonlinear Schrödinger equations, SUT J. Math.34 (1998) 111-137. Zbl0920.35144MR1662330
  8. [8] Hayashi N., Miao C., Naumkin P.I., Global existence of small solutions to the generalized derivative nonlinear Schrödinger equations, Asymptotic Anal.21 (1999) 133-147. Zbl0937.35171MR1723555
  9. [9] Hayashi N., Ozawa T., Remarks on nonlinear Schrödinger equations in one space dimension, Differential Integral Equations7 (1994) 453-461. Zbl0803.35137MR1255899
  10. [10] Hayashi N., Ozawa T., Global, small radially symmetric solutions to nonlinear Schrödinger equations and a gauge transformation, Differential Integral Equations8 (1995) 1061-1072. Zbl0823.35157MR1325546
  11. [11] Kato J., Existence and uniqueness of the solution to the modified Schrödinger map, Math. Res. Lett.12 (2–3) (2005) 171-186. Zbl1082.35140MR2150874
  12. [12] Kato T., Nonlinear Schrödinger equations, in: Holden H., Jensen A. (Eds.), Schrödinger Operators, Lecture Notes in Physics, vol. 345, Springer-Verlag, Berlin, 1989, pp. 218-263. Zbl0698.35131MR1037322
  13. [13] Kato T., Ponce G., Commutator estimates and the Euler and Navier–Stokes equations, Comm. Pure Appl. Math.41 (1988) 891-907. Zbl0671.35066MR951744
  14. [14] Keel M., Tao T., Small data blow-up for semilinear Klein–Gordon equations, Amer. J. Math.121 (3) (1999) 629-669. Zbl0931.35105MR1738405
  15. [15] Kenig C., Pollack D., Staffilani G., Toro T., The Cauchy problem for Schrödinger flows into Kähler manifolds, arXiv:, math.AP/0511701v1. Zbl1193.35208
  16. [16] Kenig C., Ponce G., Vega L., Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (3) (1993) 255-288. Zbl0786.35121MR1230709
  17. [17] Kenig C., Ponce G., Vega L., Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math.134 (3) (1998) 489-545. Zbl0928.35158MR1660933
  18. [18] Klainerman S., Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal.78 (1) (1982) 73-98. Zbl0502.35015MR654553
  19. [19] Klainerman S., Weighted L and L 1 estimates for solutions to the classical wave equation in three space dimensions, Comm. Pure Appl. Math.37 (2) (1984) 269-288. Zbl0583.35068MR733719
  20. [20] Klainerman S., Ponce G., Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math.36 (1) (1983) 133-141. Zbl0509.35009MR680085
  21. [21] Lindblad H., Sogge C., On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal.130 (2) (1995) 357-426. Zbl0846.35085MR1335386
  22. [22] Machihara S., Nakanishi K., Ozawa T., Nonrelativistic limit in the energy space for nonlinear Klein–Gordon equations, Math. Ann.322 (3) (2002) 603-621. Zbl0991.35080MR1895710
  23. [23] Machihara S., Nakanishi K., Ozawa T., Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana19 (1) (2003) 179-194. Zbl1041.35061MR1993419
  24. [24] Nahmod A., Stefanov A., Uhlenbeck K., On Schrödinger maps, Comm. Pure Appl. Math.56 (1) (2003) 114-151. Zbl1028.58018MR1929444
  25. [25] Nakamura M., Ozawa T., Small data scattering for nonlinear Schrödinger, wave and Klein–Gordon equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)1 (2002) 435-460. Zbl1121.35086MR1991146
  26. [26] Ozawa T., Finite energy solutions for the Schrödinger equations with quadratic nonlinearity in one space dimension, Funkcial. Ekvac.41 (3) (1998) 451-468. Zbl1140.35565MR1676883
  27. [27] Ozawa T., Remarks on quadratic nonlinear Schrödinger equations, Funkcial. Ekvac.38 (2) (1995) 217-232. Zbl0842.35060MR1356325
  28. [28] Shatah J., Global existence of small solutions to nonlinear evolution equations, J. Differential Equations46 (3) (1982) 409-425. Zbl0518.35046MR681231
  29. [29] Shatah J., Zeng C., Schrödinger maps and anti-ferromagnetic chains, Comm. Math. Phys.262 (2) (2006) 299-315. Zbl1104.58007MR2200262
  30. [30] Soyeur A., The Cauchy problem for the Ishimori equations, J. Funct. Anal.105 (2) (1992) 233-255. Zbl0763.35077MR1160079
  31. [31] Sulem C., Sulem P.-L., The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
  32. [32] Tonegawa S., Global existence for a class of cubic nonlinear Schrödinger equations in one space dimension, Hokkaido Math. J.30 (2) (2001) 451-473. Zbl1045.35082MR1844828

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.