Global existence of small classical solutions to nonlinear Schrödinger equations
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 2, page 303-311
- ISSN: 0294-1449
Access Full Article
topHow to cite
topOzawa, Tohru, and Zhai, Jian. "Global existence of small classical solutions to nonlinear Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 303-311. <http://eudml.org/doc/78790>.
@article{Ozawa2008,
author = {Ozawa, Tohru, Zhai, Jian},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equations; Schrödinger maps; Cauchy problem; small solutions},
language = {eng},
number = {2},
pages = {303-311},
publisher = {Elsevier},
title = {Global existence of small classical solutions to nonlinear Schrödinger equations},
url = {http://eudml.org/doc/78790},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Ozawa, Tohru
AU - Zhai, Jian
TI - Global existence of small classical solutions to nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 303
EP - 311
LA - eng
KW - nonlinear Schrödinger equations; Schrödinger maps; Cauchy problem; small solutions
UR - http://eudml.org/doc/78790
ER -
References
top- [1] Cazenave T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, 2003. Zbl1055.35003MR2002047
- [2] Chang N.-H., Shatah J., Uhlenbeck K., Schrödinger maps, Comm. Pure Appl. Math.53 (2003) 590-602. Zbl1028.35134MR1737504
- [3] Chihara H., Global existence of small solutions to semilinear Schrödinger equations with gauge invariance, Publ. RIMS31 (5) (1995) 731-753. Zbl0847.35126MR1367670
- [4] Chihara H., The initial value problem for cubic semilinear Schrödinger equations, Publ. RIMS32 (3) (1996) 445-471. Zbl0870.35095MR1409797
- [5] Ginibre J., Introduction aux équations de Schrödinger non linéaires, Paris Onze Edition, Université Paris-Sud, 1998, L161.
- [6] Hayashi N., Hirata H., Local existence in time of small solutions to the elliptic–hyperbolic Davey–Stewartson system in the usual Sobolev space, Proc. Edinburgh Math. Soc.40 (1997) 563-581. Zbl0910.35113MR1475917
- [7] Hayashi N., Kaikina E.I., Local existence of solutions to the Cauchy problem for nonlinear Schrödinger equations, SUT J. Math.34 (1998) 111-137. Zbl0920.35144MR1662330
- [8] Hayashi N., Miao C., Naumkin P.I., Global existence of small solutions to the generalized derivative nonlinear Schrödinger equations, Asymptotic Anal.21 (1999) 133-147. Zbl0937.35171MR1723555
- [9] Hayashi N., Ozawa T., Remarks on nonlinear Schrödinger equations in one space dimension, Differential Integral Equations7 (1994) 453-461. Zbl0803.35137MR1255899
- [10] Hayashi N., Ozawa T., Global, small radially symmetric solutions to nonlinear Schrödinger equations and a gauge transformation, Differential Integral Equations8 (1995) 1061-1072. Zbl0823.35157MR1325546
- [11] Kato J., Existence and uniqueness of the solution to the modified Schrödinger map, Math. Res. Lett.12 (2–3) (2005) 171-186. Zbl1082.35140MR2150874
- [12] Kato T., Nonlinear Schrödinger equations, in: Holden H., Jensen A. (Eds.), Schrödinger Operators, Lecture Notes in Physics, vol. 345, Springer-Verlag, Berlin, 1989, pp. 218-263. Zbl0698.35131MR1037322
- [13] Kato T., Ponce G., Commutator estimates and the Euler and Navier–Stokes equations, Comm. Pure Appl. Math.41 (1988) 891-907. Zbl0671.35066MR951744
- [14] Keel M., Tao T., Small data blow-up for semilinear Klein–Gordon equations, Amer. J. Math.121 (3) (1999) 629-669. Zbl0931.35105MR1738405
- [15] Kenig C., Pollack D., Staffilani G., Toro T., The Cauchy problem for Schrödinger flows into Kähler manifolds, arXiv:, math.AP/0511701v1. Zbl1193.35208
- [16] Kenig C., Ponce G., Vega L., Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (3) (1993) 255-288. Zbl0786.35121MR1230709
- [17] Kenig C., Ponce G., Vega L., Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math.134 (3) (1998) 489-545. Zbl0928.35158MR1660933
- [18] Klainerman S., Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal.78 (1) (1982) 73-98. Zbl0502.35015MR654553
- [19] Klainerman S., Weighted and estimates for solutions to the classical wave equation in three space dimensions, Comm. Pure Appl. Math.37 (2) (1984) 269-288. Zbl0583.35068MR733719
- [20] Klainerman S., Ponce G., Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math.36 (1) (1983) 133-141. Zbl0509.35009MR680085
- [21] Lindblad H., Sogge C., On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal.130 (2) (1995) 357-426. Zbl0846.35085MR1335386
- [22] Machihara S., Nakanishi K., Ozawa T., Nonrelativistic limit in the energy space for nonlinear Klein–Gordon equations, Math. Ann.322 (3) (2002) 603-621. Zbl0991.35080MR1895710
- [23] Machihara S., Nakanishi K., Ozawa T., Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana19 (1) (2003) 179-194. Zbl1041.35061MR1993419
- [24] Nahmod A., Stefanov A., Uhlenbeck K., On Schrödinger maps, Comm. Pure Appl. Math.56 (1) (2003) 114-151. Zbl1028.58018MR1929444
- [25] Nakamura M., Ozawa T., Small data scattering for nonlinear Schrödinger, wave and Klein–Gordon equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)1 (2002) 435-460. Zbl1121.35086MR1991146
- [26] Ozawa T., Finite energy solutions for the Schrödinger equations with quadratic nonlinearity in one space dimension, Funkcial. Ekvac.41 (3) (1998) 451-468. Zbl1140.35565MR1676883
- [27] Ozawa T., Remarks on quadratic nonlinear Schrödinger equations, Funkcial. Ekvac.38 (2) (1995) 217-232. Zbl0842.35060MR1356325
- [28] Shatah J., Global existence of small solutions to nonlinear evolution equations, J. Differential Equations46 (3) (1982) 409-425. Zbl0518.35046MR681231
- [29] Shatah J., Zeng C., Schrödinger maps and anti-ferromagnetic chains, Comm. Math. Phys.262 (2) (2006) 299-315. Zbl1104.58007MR2200262
- [30] Soyeur A., The Cauchy problem for the Ishimori equations, J. Funct. Anal.105 (2) (1992) 233-255. Zbl0763.35077MR1160079
- [31] Sulem C., Sulem P.-L., The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
- [32] Tonegawa S., Global existence for a class of cubic nonlinear Schrödinger equations in one space dimension, Hokkaido Math. J.30 (2) (2001) 451-473. Zbl1045.35082MR1844828
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.