Properties of the scattering map II.
Thomas Kappeler, Eugene Trubowitz (1988)
Commentarii mathematici Helvetici
Similarity:
Thomas Kappeler, Eugene Trubowitz (1988)
Commentarii mathematici Helvetici
Similarity:
Martin Schechter (1974)
Commentarii mathematici Helvetici
Similarity:
A. Martin (1974)
Recherche Coopérative sur Programme n°25
Similarity:
Günter Stolz, Thomas Poerschke (1993)
Mathematische Zeitschrift
Similarity:
Yafaev, D. (1998)
Documenta Mathematica
Similarity:
Anna Kazeykina (2013)
Journées Équations aux dérivées partielles
Similarity:
Novikov-Veselov equation is a (2+1)-dimensional analog of the classic Korteweg-de Vries equation integrable via the inverse scattering translform for the 2-dimensional stationary Schrödinger equation. In this talk we present some recent results on existence and absence of algebraically localized solitons for the Novikov-Veselov equation as well as some results on the large time behavior of the “inverse scattering solutions” for this equation.
D. R. Yafaev (1988-1989)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Georgi Vodev (1992)
Journées équations aux dérivées partielles
Similarity:
Anders Melin (1987)
Journées équations aux dérivées partielles
Similarity:
Pl. Muthuramalingam (1984/85)
Mathematische Zeitschrift
Similarity:
V. Chiadò Piat, M. Codegone (2003)
RACSAM
Similarity:
In this paper, we consider a family of scattering problems in perforated unbounded domains Ω. We assume that the perforation is contained in a bounded region and that the holes have a ?critical? size. We study the asymptotic behaviour of the outgoing solutions of the steady-state scattering problem and we prove that an extra term appears in the limit equation. Finally, we obtain convergence results for scattering frequencies and solutions.
Plamen D. Stefanov (1989)
Mathematische Zeitschrift
Similarity: