Sharp bounds for the number of the scattering poles

Georgi Vodev

Journées équations aux dérivées partielles (1992)

  • page 1-5
  • ISSN: 0752-0360

How to cite

top

Vodev, Georgi. "Sharp bounds for the number of the scattering poles." Journées équations aux dérivées partielles (1992): 1-5. <http://eudml.org/doc/93258>.

@article{Vodev1992,
author = {Vodev, Georgi},
journal = {Journées équations aux dérivées partielles},
keywords = {upper bounds on the number of scattering poles; compactly supported perturbations of the Laplacian},
language = {eng},
pages = {1-5},
publisher = {Ecole polytechnique},
title = {Sharp bounds for the number of the scattering poles},
url = {http://eudml.org/doc/93258},
year = {1992},
}

TY - JOUR
AU - Vodev, Georgi
TI - Sharp bounds for the number of the scattering poles
JO - Journées équations aux dérivées partielles
PY - 1992
PB - Ecole polytechnique
SP - 1
EP - 5
LA - eng
KW - upper bounds on the number of scattering poles; compactly supported perturbations of the Laplacian
UR - http://eudml.org/doc/93258
ER -

References

top
  1. [1] A. Intissar, A polynomial bound on the number of scattering poles for a potential in even dimensional space in Rn, Commun. P.D.E. 11 (1986), 367-386. Zbl0607.35069MR87j:35286
  2. [2] P. D. Lax and R. S. Phillips, Scattering Theory, New York, Academic Press, 1967. Zbl0186.16301
  3. [3] R. B. Melrose, Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53 (1983), 287-303. Zbl0535.35067MR85k:35180
  4. [4] R. B. Melrose, Polynomial bounds on the distribution of the poles in scattering by obstacle, Journées «Equations aux Dérivées Partielles», Saint-Jean-de-Montes, 1984. Zbl0621.35073
  5. [5] J. Sjöstrand and M. Zworski, Complex scaling and distribution of the scattering poles, J. Amer. Math. Soc. 4 (1991), 729-769. Zbl0752.35046MR92g:35166
  6. [6] J. Sjöstrand and M. Zworski, Distribution of scattering poles near real axis, Commun. P.D.E., to appear. Zbl0766.35031
  7. [7] J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles, preprint, 1992. Zbl0823.35137
  8. [8] E. Titchmarsh, The Theory of Functions, Oxford University Press, 1968. Zbl0005.21004
  9. [9] G. Vodev, Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, Math. Ann. 291 (1991), 39-49. Zbl0754.35105MR93f:47060
  10. [10] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146 (1992), 205-216. Zbl0766.35032MR93f:35173
  11. [11] G. Vodev, On the distribution of scattering poles for perturbations of the Laplacian, Ann. Inst. Fourier (Grenoble) 42 (1992), to appear. Zbl0738.35054MR93i:35098
  12. [12] M. Zworski, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Funct. Anal. 82 (1989), 370-403. Zbl0681.47002MR90d:35233
  13. [13] M. Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), 311-323. Zbl0705.35099MR90h:35190

NotesEmbed ?

top

You must be logged in to post comments.