Sharp bounds for the number of the scattering poles

Georgi Vodev

Journées équations aux dérivées partielles (1992)

  • page 1-5
  • ISSN: 0752-0360

How to cite

top

Vodev, Georgi. "Sharp bounds for the number of the scattering poles." Journées équations aux dérivées partielles (1992): 1-5. <http://eudml.org/doc/93258>.

@article{Vodev1992,
author = {Vodev, Georgi},
journal = {Journées équations aux dérivées partielles},
keywords = {upper bounds on the number of scattering poles; compactly supported perturbations of the Laplacian},
language = {eng},
pages = {1-5},
publisher = {Ecole polytechnique},
title = {Sharp bounds for the number of the scattering poles},
url = {http://eudml.org/doc/93258},
year = {1992},
}

TY - JOUR
AU - Vodev, Georgi
TI - Sharp bounds for the number of the scattering poles
JO - Journées équations aux dérivées partielles
PY - 1992
PB - Ecole polytechnique
SP - 1
EP - 5
LA - eng
KW - upper bounds on the number of scattering poles; compactly supported perturbations of the Laplacian
UR - http://eudml.org/doc/93258
ER -

References

top
  1. [1] A. Intissar, A polynomial bound on the number of scattering poles for a potential in even dimensional space in Rn, Commun. P.D.E. 11 (1986), 367-386. Zbl0607.35069MR87j:35286
  2. [2] P. D. Lax and R. S. Phillips, Scattering Theory, New York, Academic Press, 1967. Zbl0186.16301
  3. [3] R. B. Melrose, Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53 (1983), 287-303. Zbl0535.35067MR85k:35180
  4. [4] R. B. Melrose, Polynomial bounds on the distribution of the poles in scattering by obstacle, Journées «Equations aux Dérivées Partielles», Saint-Jean-de-Montes, 1984. Zbl0621.35073
  5. [5] J. Sjöstrand and M. Zworski, Complex scaling and distribution of the scattering poles, J. Amer. Math. Soc. 4 (1991), 729-769. Zbl0752.35046MR92g:35166
  6. [6] J. Sjöstrand and M. Zworski, Distribution of scattering poles near real axis, Commun. P.D.E., to appear. Zbl0766.35031
  7. [7] J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles, preprint, 1992. Zbl0823.35137
  8. [8] E. Titchmarsh, The Theory of Functions, Oxford University Press, 1968. Zbl0005.21004
  9. [9] G. Vodev, Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, Math. Ann. 291 (1991), 39-49. Zbl0754.35105MR93f:47060
  10. [10] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146 (1992), 205-216. Zbl0766.35032MR93f:35173
  11. [11] G. Vodev, On the distribution of scattering poles for perturbations of the Laplacian, Ann. Inst. Fourier (Grenoble) 42 (1992), to appear. Zbl0738.35054MR93i:35098
  12. [12] M. Zworski, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Funct. Anal. 82 (1989), 370-403. Zbl0681.47002MR90d:35233
  13. [13] M. Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), 311-323. Zbl0705.35099MR90h:35190

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.