Transformation de Poisson de formes différentielles. Le cas de l'espace hyperbolique.
Pierre-Yves Gaillard (1986)
Commentarii mathematici Helvetici
Similarity:
Pierre-Yves Gaillard (1986)
Commentarii mathematici Helvetici
Similarity:
Yvette Kosmann-Schwarzbach, Juan Monterde (2002)
Annales de l’institut Fourier
Similarity:
We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, , of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of...
Alexander Ostrowski (1969)
Commentarii mathematici Helvetici
Similarity:
Yvette Kosmann-Schwarzbach (1996)
Annales de l'institut Fourier
Similarity:
Constructing an even Poisson algebra from a Gerstenhaber algebra by means of an odd derivation of square 0 is shown to be possible in the category of Loday algebras (algebras with a non-skew-symmetric bracket, generalizing the Lie algebras, heretofore called Leibniz algebras in the literature). Such “derived brackets” give rise to Lie brackets on certain quotient spaces, and also on certain Abelian subalgebras. The construction of these derived brackets explains the origin of the Lie...
Dragomir Z. Djokovic (1979)
Journal für die reine und angewandte Mathematik
Similarity:
Joel M. Cohen (1969)
Commentarii mathematici Helvetici
Similarity:
Mitric, Gabriel (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Partha Guha (2004)
Archivum Mathematicum
Similarity:
In this note we discuss the geometrical relationship between bi-Hamiltonian systems and bi-differential calculi, introduced by Dimakis and Möller–Hoissen.