Divergence operators and odd Poisson brackets

Yvette Kosmann-Schwarzbach[1]; Juan Monterde[2]

  • [1] École Polytechnique, Centre de Mathématiques, Plateau de Palaiseau, 91128 Palaiseau Cedex (France)
  • [2] Universitat de València, Departamento de Geometria y Topologia, 46100 Burjasot (València) (Espagne)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 2, page 419-456
  • ISSN: 0373-0956

Abstract

top
We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, Δ , of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples include generators of the Schouten bracket of multivectors on a manifold (the supermanifold being the cotangent bundle where the coordinates in the fibres are odd) and generators of the Koszul-Schouten bracket of forms on a Poisson manifold (the supermanifold being the tangent bundle, with odd coordinates on the fibres).

How to cite

top

Kosmann-Schwarzbach, Yvette, and Monterde, Juan. "Divergence operators and odd Poisson brackets." Annales de l’institut Fourier 52.2 (2002): 419-456. <http://eudml.org/doc/115985>.

@article{Kosmann2002,
abstract = {We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, $\Delta $, of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples include generators of the Schouten bracket of multivectors on a manifold (the supermanifold being the cotangent bundle where the coordinates in the fibres are odd) and generators of the Koszul-Schouten bracket of forms on a Poisson manifold (the supermanifold being the tangent bundle, with odd coordinates on the fibres).},
affiliation = {École Polytechnique, Centre de Mathématiques, Plateau de Palaiseau, 91128 Palaiseau Cedex (France); Universitat de València, Departamento de Geometria y Topologia, 46100 Burjasot (València) (Espagne)},
author = {Kosmann-Schwarzbach, Yvette, Monterde, Juan},
journal = {Annales de l’institut Fourier},
keywords = {graded Lie algebras; Gerstenhaber algebra; Batalin-Vilkovisky algebra; Schouten bracket; supermanifold; berezinian volume; graded connection; Maurer-Cartan equation; quantum master equation; supermanifold, Berezinian volume},
language = {eng},
number = {2},
pages = {419-456},
publisher = {Association des Annales de l'Institut Fourier},
title = {Divergence operators and odd Poisson brackets},
url = {http://eudml.org/doc/115985},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Kosmann-Schwarzbach, Yvette
AU - Monterde, Juan
TI - Divergence operators and odd Poisson brackets
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 419
EP - 456
AB - We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, $\Delta $, of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples include generators of the Schouten bracket of multivectors on a manifold (the supermanifold being the cotangent bundle where the coordinates in the fibres are odd) and generators of the Koszul-Schouten bracket of forms on a Poisson manifold (the supermanifold being the tangent bundle, with odd coordinates on the fibres).
LA - eng
KW - graded Lie algebras; Gerstenhaber algebra; Batalin-Vilkovisky algebra; Schouten bracket; supermanifold; berezinian volume; graded connection; Maurer-Cartan equation; quantum master equation; supermanifold, Berezinian volume
UR - http://eudml.org/doc/115985
ER -

References

top
  1. M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys A12 (1997), 1405-1429 Zbl1073.81655MR1432574
  2. I. A. Batalin, G. A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102 (1981), 27-31 MR616572
  3. I. A. Batalin, G. A. Vilkovisky, Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nuclear Physics B 234 (1984), 106-124 MR736479
  4. F. A. Berezin, Introduction to Superanalysis, (1987), D. Reidel Zbl0659.58001
  5. J. V. Beltrán, J. Monterde, Graded Poisson structures on the algebra of differential forms, Comment. Math. Helv. 70 (1995), 383-402 Zbl0844.58025MR1340100
  6. J. V. Beltrán, J. Monterde, O. A. Sánchez, - Valenzuela, Graded Jacobi operators on the algebra of differential forms, Compositio Math. 106 (1997), 43-59 Zbl0874.58017MR1446150
  7. P. Deligne et al., Quantum Fields and Strings: A Course for Mathematicians, vol. 1, part 1 (1999), Amer. Math. Soc. 
  8. B. De, Witt, Supermanifolds, (1984), Cambridge Univ. Press 
  9. A. Frölicher, A. Nijenhuis, Theory of vector-valued differential forms, part I, Indag. Math 18 (1956), 338-359 Zbl0079.37502MR82554
  10. E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Commun. Math. Phys. 159 (1994), 265-285 Zbl0807.17026MR1256989
  11. H. Hata, B. Zwiebach, Developing the covariant Batalin-Vilkovisky approach to string theory, Ann. Phys. 229 (1994), 177-216 Zbl0784.53054MR1257465
  12. D. Hernández, Ruipérez, J. Muñoz, Masqué, Construction intrinsèque du faisceau de Berezin d'une variété graduée, Comptes Rendus Acad. Sci. Paris, Sér. I Math 301 (1985), 915-918 Zbl0592.58042MR829061
  13. D. Hernández, Ruipérez, J. Muñoz, Masqué, Variational berezinian problems and their relationship with graded variational problems, Diff. Geometric Methods in Math. Phys. (Salamanca 1985) 1251 (1987), 137-149, Springer-Verlag Zbl0627.58020
  14. J. Huebschmann, Poisson cohomology and quantization, J. für die reine und angew. Math. 408 (1990), 57-113 Zbl0699.53037MR1058984
  15. J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier 48 (1998), 425-440 Zbl0973.17027MR1625610
  16. J. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. für die reine und angew. Math. 510 (1999), 103-159 Zbl1034.53083MR1696093
  17. O. M. Khudaverdian, Geometry of superspace with even and odd brackets, J. Math. Phys. 32 (1991), 1934-1937 Zbl0737.58063MR1112728
  18. O. M. Khudaverdian, Batalin-Vilkovisky formalism and odd symplectic geometry, Geometry and integrable models (Dubna 1994) (1996), 144-181, World Sci. Publ. Zbl0863.58009
  19. O. M. Khudaverdian, A. P. Nersessian, On the geometry of the Batalin-Vilkovisky formalism, Mod. Phys. Lett. A 8 (1993), 2377-2385 Zbl1021.81948MR1234886
  20. Y. Kosmann, - Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier 46 (1996), 1243-1274 Zbl0858.17027MR1427124
  21. Y. Kosmann, Schwarzbach, Modular vector fields and Batalin-Vilkovisky algebras, Banach Center Publications 51 (2000), 109-129 Zbl1018.17020MR1764439
  22. Y. Kosmann, - Schwarzbach, F. Magri, Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré A53 (1990), 35-81 Zbl0707.58048MR1077465
  23. B. Kostant, Graded manifolds, graded Lie theory and prequantization, Proc. Conf. Diff. Geom. Methods in Math. Phys. (Bonn 1975) 570 (1977), 177-306 Zbl0358.53024
  24. J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Élie Cartan et les mathématiques d'aujourd'hui (1985), 257-271, Soc. Math. Fr. Zbl0615.58029
  25. I. S. Krasil'shchik, Schouten brackets and canonical algebras, 1334 (1988), 79-110, Springer-Verlag Zbl0661.53059
  26. I. S. Krasil'shchik, Supercanonical algebras and Schouten brackets, Mat. Zametki 49(1) (1991), 70-76 Zbl0723.58020MR1101552
  27. D. Leites, Quantization and supermanifolds, Supplément 3 in Berezin (1991), Kluwer 
  28. B. H. Lian, G. J. Zuckerman, New perspectives on the BRST-algebraic structure of string theory, Commun. Math. Phys 154 (1993), 613-646 Zbl0780.17029MR1224094
  29. Y. I. Manin, Gauge Field Theory and Complex Geometry, (1988), Springer-Verlag Zbl0641.53001MR954833
  30. Y. I. Manin, I. B. Penkov, The formalism of left and right connections on supermanifolds, Lectures on Supermanifolds, Geometrical Methods and Conformal Groups Doebner H.-D., Hennig, J. D.PalevT. D.eds. (1989), 3-13, World Sci. Publ. Zbl0824.58007
  31. J. Monterde, A. Montesinos, Integral curves of derivations, Ann. Global Anal. Geom. 6 (1988), 177-189 Zbl0632.58017MR982764
  32. J. Monterde, O. A. Sánchez, Valenzuela, The exterior derivative as a Killing vector field, Israel J. Math. 93 (1996), 157-170 Zbl0853.58010MR1380639
  33. I. B. Penkov, 𝒟 -modules on supermanifolds, Invent. Math. 71 (1983), 501-512 Zbl0528.32012MR695902
  34. M. Rothstein, Integration on noncompact supermanifolds, Trans. Amer. Math. Soc. 299 (1987), 387-396 Zbl0611.58014MR869418
  35. V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras 
  36. A. Schwarz, Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys. 155 (1993), 249-260 Zbl0786.58017MR1230027
  37. A. Schwarz, Semi-classical approximation in Batalin-Vilkovisky formalism, Commun. Math. Phys. 158 (1993), 373-396 Zbl0855.58005MR1249600
  38. J. Stasheff, Deformation theory and the Batalin-Vilkovisky master equation, Deformation Theory and Symplectic Geometry (Ascona 1996) (1997), 271-284, Kluwer Zbl1149.81359
  39. I. Vaisman, Lectures on the Geometry of Poisson Manifolds, (1994), Birkhäuser Zbl0810.53019MR1269545
  40. T. Voronov, Geometric integration theory on supermanifolds, Sov. Sci. Rev. C Math 9 (1992), 1-138 Zbl0839.58014MR1202882
  41. A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394 Zbl0902.58013MR1484598
  42. E. Witten, A note on the antibracket formalism, Mod. Phys. Lett. A5 (1990), 487-494 Zbl1020.81931MR1049114
  43. P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Commun. Math. Phys. 200 (1999), 545-560 Zbl0941.17016MR1675117
  44. D. Leites, Supermanifold Theory, Karelia Branch of the USSR Acad. of Sci., Petrozavodsk (in Russian). (1983) 
  45. I. S. Krasil'shchik, Supercanonical algebras and Schouten brackets, Mathematical Notes 49(1) (1991), 50-54 Zbl0732.58016MR1101552

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.