Divergence operators and odd Poisson brackets
Yvette Kosmann-Schwarzbach[1]; Juan Monterde[2]
- [1] École Polytechnique, Centre de Mathématiques, Plateau de Palaiseau, 91128 Palaiseau Cedex (France)
- [2] Universitat de València, Departamento de Geometria y Topologia, 46100 Burjasot (València) (Espagne)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 2, page 419-456
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKosmann-Schwarzbach, Yvette, and Monterde, Juan. "Divergence operators and odd Poisson brackets." Annales de l’institut Fourier 52.2 (2002): 419-456. <http://eudml.org/doc/115985>.
@article{Kosmann2002,
abstract = {We define the divergence operators on a graded algebra, and we show that, given an odd
Poisson bracket on the algebra, the operator that maps an element to the divergence of
the hamiltonian derivation that it defines is a generator of the bracket. This is the
“odd laplacian”, $\Delta $, of Batalin-Vilkovisky quantization. We then study the
generators of odd Poisson brackets on supermanifolds, where divergences of graded vector
fields can be defined either in terms of berezinian volumes or of graded connections.
Examples include generators of the Schouten bracket of multivectors on a manifold (the
supermanifold being the cotangent bundle where the coordinates in the fibres are odd) and
generators of the Koszul-Schouten bracket of forms on a Poisson manifold (the
supermanifold being the tangent bundle, with odd coordinates on the fibres).},
affiliation = {École Polytechnique, Centre de Mathématiques, Plateau de Palaiseau, 91128 Palaiseau Cedex (France); Universitat de València, Departamento de Geometria y Topologia, 46100 Burjasot (València) (Espagne)},
author = {Kosmann-Schwarzbach, Yvette, Monterde, Juan},
journal = {Annales de l’institut Fourier},
keywords = {graded Lie algebras; Gerstenhaber algebra; Batalin-Vilkovisky algebra; Schouten bracket; supermanifold; berezinian volume; graded connection; Maurer-Cartan equation; quantum master equation; supermanifold, Berezinian volume},
language = {eng},
number = {2},
pages = {419-456},
publisher = {Association des Annales de l'Institut Fourier},
title = {Divergence operators and odd Poisson brackets},
url = {http://eudml.org/doc/115985},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Kosmann-Schwarzbach, Yvette
AU - Monterde, Juan
TI - Divergence operators and odd Poisson brackets
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 419
EP - 456
AB - We define the divergence operators on a graded algebra, and we show that, given an odd
Poisson bracket on the algebra, the operator that maps an element to the divergence of
the hamiltonian derivation that it defines is a generator of the bracket. This is the
“odd laplacian”, $\Delta $, of Batalin-Vilkovisky quantization. We then study the
generators of odd Poisson brackets on supermanifolds, where divergences of graded vector
fields can be defined either in terms of berezinian volumes or of graded connections.
Examples include generators of the Schouten bracket of multivectors on a manifold (the
supermanifold being the cotangent bundle where the coordinates in the fibres are odd) and
generators of the Koszul-Schouten bracket of forms on a Poisson manifold (the
supermanifold being the tangent bundle, with odd coordinates on the fibres).
LA - eng
KW - graded Lie algebras; Gerstenhaber algebra; Batalin-Vilkovisky algebra; Schouten bracket; supermanifold; berezinian volume; graded connection; Maurer-Cartan equation; quantum master equation; supermanifold, Berezinian volume
UR - http://eudml.org/doc/115985
ER -
References
top- M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys A12 (1997), 1405-1429 Zbl1073.81655MR1432574
- I. A. Batalin, G. A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102 (1981), 27-31 MR616572
- I. A. Batalin, G. A. Vilkovisky, Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nuclear Physics B 234 (1984), 106-124 MR736479
- F. A. Berezin, Introduction to Superanalysis, (1987), D. Reidel Zbl0659.58001
- J. V. Beltrán, J. Monterde, Graded Poisson structures on the algebra of differential forms, Comment. Math. Helv. 70 (1995), 383-402 Zbl0844.58025MR1340100
- J. V. Beltrán, J. Monterde, O. A. Sánchez, - Valenzuela, Graded Jacobi operators on the algebra of differential forms, Compositio Math. 106 (1997), 43-59 Zbl0874.58017MR1446150
- P. Deligne et al., Quantum Fields and Strings: A Course for Mathematicians, vol. 1, part 1 (1999), Amer. Math. Soc.
- B. De, Witt, Supermanifolds, (1984), Cambridge Univ. Press
- A. Frölicher, A. Nijenhuis, Theory of vector-valued differential forms, part I, Indag. Math 18 (1956), 338-359 Zbl0079.37502MR82554
- E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Commun. Math. Phys. 159 (1994), 265-285 Zbl0807.17026MR1256989
- H. Hata, B. Zwiebach, Developing the covariant Batalin-Vilkovisky approach to string theory, Ann. Phys. 229 (1994), 177-216 Zbl0784.53054MR1257465
- D. Hernández, Ruipérez, J. Muñoz, Masqué, Construction intrinsèque du faisceau de Berezin d'une variété graduée, Comptes Rendus Acad. Sci. Paris, Sér. I Math 301 (1985), 915-918 Zbl0592.58042MR829061
- D. Hernández, Ruipérez, J. Muñoz, Masqué, Variational berezinian problems and their relationship with graded variational problems, Diff. Geometric Methods in Math. Phys. (Salamanca 1985) 1251 (1987), 137-149, Springer-Verlag Zbl0627.58020
- J. Huebschmann, Poisson cohomology and quantization, J. für die reine und angew. Math. 408 (1990), 57-113 Zbl0699.53037MR1058984
- J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier 48 (1998), 425-440 Zbl0973.17027MR1625610
- J. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. für die reine und angew. Math. 510 (1999), 103-159 Zbl1034.53083MR1696093
- O. M. Khudaverdian, Geometry of superspace with even and odd brackets, J. Math. Phys. 32 (1991), 1934-1937 Zbl0737.58063MR1112728
- O. M. Khudaverdian, Batalin-Vilkovisky formalism and odd symplectic geometry, Geometry and integrable models (Dubna 1994) (1996), 144-181, World Sci. Publ. Zbl0863.58009
- O. M. Khudaverdian, A. P. Nersessian, On the geometry of the Batalin-Vilkovisky formalism, Mod. Phys. Lett. A 8 (1993), 2377-2385 Zbl1021.81948MR1234886
- Y. Kosmann, - Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier 46 (1996), 1243-1274 Zbl0858.17027MR1427124
- Y. Kosmann, Schwarzbach, Modular vector fields and Batalin-Vilkovisky algebras, Banach Center Publications 51 (2000), 109-129 Zbl1018.17020MR1764439
- Y. Kosmann, - Schwarzbach, F. Magri, Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré A53 (1990), 35-81 Zbl0707.58048MR1077465
- B. Kostant, Graded manifolds, graded Lie theory and prequantization, Proc. Conf. Diff. Geom. Methods in Math. Phys. (Bonn 1975) 570 (1977), 177-306 Zbl0358.53024
- J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Élie Cartan et les mathématiques d'aujourd'hui (1985), 257-271, Soc. Math. Fr. Zbl0615.58029
- I. S. Krasil'shchik, Schouten brackets and canonical algebras, 1334 (1988), 79-110, Springer-Verlag Zbl0661.53059
- I. S. Krasil'shchik, Supercanonical algebras and Schouten brackets, Mat. Zametki 49(1) (1991), 70-76 Zbl0723.58020MR1101552
- D. Leites, Quantization and supermanifolds, Supplément 3 in Berezin (1991), Kluwer
- B. H. Lian, G. J. Zuckerman, New perspectives on the BRST-algebraic structure of string theory, Commun. Math. Phys 154 (1993), 613-646 Zbl0780.17029MR1224094
- Y. I. Manin, Gauge Field Theory and Complex Geometry, (1988), Springer-Verlag Zbl0641.53001MR954833
- Y. I. Manin, I. B. Penkov, The formalism of left and right connections on supermanifolds, Lectures on Supermanifolds, Geometrical Methods and Conformal Groups Doebner H.-D., Hennig, J. D.PalevT. D.eds. (1989), 3-13, World Sci. Publ. Zbl0824.58007
- J. Monterde, A. Montesinos, Integral curves of derivations, Ann. Global Anal. Geom. 6 (1988), 177-189 Zbl0632.58017MR982764
- J. Monterde, O. A. Sánchez, Valenzuela, The exterior derivative as a Killing vector field, Israel J. Math. 93 (1996), 157-170 Zbl0853.58010MR1380639
- I. B. Penkov, -modules on supermanifolds, Invent. Math. 71 (1983), 501-512 Zbl0528.32012MR695902
- M. Rothstein, Integration on noncompact supermanifolds, Trans. Amer. Math. Soc. 299 (1987), 387-396 Zbl0611.58014MR869418
- V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras
- A. Schwarz, Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys. 155 (1993), 249-260 Zbl0786.58017MR1230027
- A. Schwarz, Semi-classical approximation in Batalin-Vilkovisky formalism, Commun. Math. Phys. 158 (1993), 373-396 Zbl0855.58005MR1249600
- J. Stasheff, Deformation theory and the Batalin-Vilkovisky master equation, Deformation Theory and Symplectic Geometry (Ascona 1996) (1997), 271-284, Kluwer Zbl1149.81359
- I. Vaisman, Lectures on the Geometry of Poisson Manifolds, (1994), Birkhäuser Zbl0810.53019MR1269545
- T. Voronov, Geometric integration theory on supermanifolds, Sov. Sci. Rev. C Math 9 (1992), 1-138 Zbl0839.58014MR1202882
- A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394 Zbl0902.58013MR1484598
- E. Witten, A note on the antibracket formalism, Mod. Phys. Lett. A5 (1990), 487-494 Zbl1020.81931MR1049114
- P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Commun. Math. Phys. 200 (1999), 545-560 Zbl0941.17016MR1675117
- D. Leites, Supermanifold Theory, Karelia Branch of the USSR Acad. of Sci., Petrozavodsk (in Russian). (1983)
- I. S. Krasil'shchik, Supercanonical algebras and Schouten brackets, Mathematical Notes 49(1) (1991), 50-54 Zbl0732.58016MR1101552
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.