S-divisible modules over domains.
Laszlo Fuchs, Luigi Salce (1992)
Forum mathematicum
Similarity:
Laszlo Fuchs, Luigi Salce (1992)
Forum mathematicum
Similarity:
L. Fuchs, S. Bazzoni, L. Salce (1995)
Forum mathematicum
Similarity:
Laszlo Fuchs, Luigi Salce (1990)
Forum mathematicum
Similarity:
Rüdiger Göbel, Saharon Shelah (1984/85)
Mathematische Zeitschrift
Similarity:
S. Ebrahimi Atani, F. Farzalipour (2009)
Colloquium Mathematicae
Similarity:
Let R be the pullback, in the sense of Levy [J. Algebra 71 (1981)], of two local Dedekind domains. We classify all those indecomposable weak multiplication R-modules M with finite-dimensional top, that is, such that M/Rad(R)M is finite-dimensional over R/Rad(R). We also establish a connection between the weak multiplication modules and the pure-injective modules over such domains.
S. Ebrahimi Atani, S. Dolati Pishhesari, M. Khoramdel (2013)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.
John Dauns (1991)
Forum mathematicum
Similarity:
Luigi Salce, Paolo Zanardo (1988)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
L. Fuchs (1987)
Aequationes mathematicae
Similarity:
Roman Sikorski (1971)
Colloquium Mathematicae
Similarity:
Laszlo Fuchs, Saharon Shelah (2003)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Luigi Salce, Peter Vámos (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Pasha Zusmanovich (2019)
Communications in Mathematics
Similarity: