On the existence of components of the Hilbert scheme with the expected number of moduli.
Angelo Felice Lopez (1991)
Mathematische Annalen
Similarity:
Angelo Felice Lopez (1991)
Mathematische Annalen
Similarity:
Giuseppe Pareschi (1989)
Manuscripta mathematica
Similarity:
G. Trautmann, Rosa María Miró-Roig (1994)
Mathematische Zeitschrift
Similarity:
Jacopo Stoppa, Richard P. Thomas (2011)
Bulletin de la Société Mathématique de France
Similarity:
We show that the Hilbert scheme of curves and Le Potier’s moduli space of stable pairs with one dimensional support have a common GIT construction. The two spaces correspond to chambers on either side of a wall in the space of GIT linearisations. We explain why this is not enough to prove the “DT/PT wall crossing conjecture” relating the invariants derived from these moduli spaces when the underlying variety is a 3-fold. We then give a gentle introduction to a small part of Joyce’s theory...
Jarod Alper (2013)
Annales de l’institut Fourier
Similarity:
We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.
T. Figiel (1976)
Studia Mathematica
Similarity:
Marius van der Put (2011)
Banach Center Publications
Similarity:
This paper is a sequel to [vdP-Sa] and [vdP]. The two classes of differential modules (0,-,3/2) and (-,-,3), related to PII, are interpreted as fine moduli spaces. It is shown that these moduli spaces coincide with the Okamoto-Painlevé spaces for the given parameters. The geometry of the moduli spaces leads to a proof of the Painlevé property for PII in standard form and in the Flaschka-Newell form. The Bäcklund transformations, the rational solutions and the Riccati solutions for PII...
Hans Jürgen Hoppe (1983)
Mathematische Annalen
Similarity:
Bernd Martin (1993)
Mathematische Zeitschrift
Similarity:
Rizov, Jordan (2006)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 14J28, 14D22. In this note we define moduli stacks of (primitively) polarized K3 spaces. We show that they are representable by Deligne-Mumford stacks over Spec(Z). Further, we look at K3 spaces with a level structure. Our main result is that the moduli functors of K3 spaces with a primitive polarization of degree 2d and a level structure are representable by smooth algebraic spaces over open parts of Spec(Z). To do this we use ideas...
R. Donagi (1987)
Inventiones mathematicae
Similarity:
Youliang Tian (1994)
Mathematische Annalen
Similarity:
Nitin Nitsure, Claude Sabbah (1996)
Mathematische Annalen
Similarity:
Zhenbo Qin (1993)
Manuscripta mathematica
Similarity:
Curtis McMullen (2013)
Journal of the European Mathematical Society
Similarity:
We discuss a common framework for studying twists of Riemann surfaces coming from earthquakes, Teichmüller theory and Schiffer variations, and use it to analyze geodesics in the moduli space of isoperiodic 1-forms.
Yung-sheng Tai (1982)
Inventiones mathematicae
Similarity:
Waszak, Aleksander (2015-11-13T13:53:55Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity: