The search session has expired. Please query the service again.

Displaying similar documents to “Rigidity of Certain Harmonic Mappings.”

Harmonic morphisms between riemannian manifolds

Bent Fuglede (1978)

Annales de l'institut Fourier

Similarity:

A harmonic morphism f : M N between Riemannian manifolds M and N is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim M dim N , since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where d f vanishes. Every non-constant harmonic morphism is shown to be...

Embedding of open riemannian manifolds by harmonic functions

Robert E. Greene, H. Wu (1975)

Annales de l'institut Fourier

Similarity:

Let M be a noncompact Riemannian manifold of dimension n . Then there exists a proper embedding of M into R 2 n + 1 by harmonic functions on M . It is easy to find 2 n + 1 harmonic functions which give an embedding. However, it is more difficult to achieve properness. The proof depends on the theorems of Lax-Malgrange and Aronszajn-Cordes in the theory of elliptic equations.