Displaying similar documents to “Extensions of nilpotent blocks.”

Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras

K.K. Abdurasulov, A.Kh. Khudoyberdiyev, M. Ladra, A.M. Sattarov (2021)

Communications in Mathematics

Similarity:

In this paper we give the description of some non-strongly nilpotent Leibniz algebras. We pay our attention to the subclass of nilpotent Leibniz algebras, which is called filiform. Note that the set of filiform Leibniz algebras of fixed dimension can be decomposed into three disjoint families. We describe the pre-derivations of filiform Leibniz algebras for the first and second families and determine those algebras in the first two classes of filiform Leibniz algebras that are non-strongly...

On split-by-nilpotent extensions

Ibrahim Assem, Dan Zacharia (2003)

Colloquium Mathematicae

Similarity:

Let A and R be two artin algebras such that R is a split extension of A by a nilpotent ideal. We prove that if R is quasi-tilted, or tame and tilted, then so is A. Moreover, generalizations of these properties, such as laura and shod, are also inherited. We also study the relationship between the tilting R-modules and the tilting A-modules.

Rings generalized by tripotents and nilpotents

Huanyin Chen, Marjan Sheibani, Nahid Ashrafi (2022)

Czechoslovak Mathematical Journal

Similarity:

We present new characterizations of the rings for which every element is a sum of two tripotents and a nilpotent that commute. These extend the results of Z. L. Ying, M. T. Koşan, Y. Zhou (2016) and Y. Zhou (2018).