Displaying similar documents to “Monotone subsequences in the sequence of fractional parts of multiples of an irrational.”

Left general fractional monotone approximation theory

George A. Anastassiou (2016)

Applicationes Mathematicae

Similarity:

We introduce left general fractional Caputo style derivatives with respect to an absolutely continuous strictly increasing function g. We give various examples of such fractional derivatives for different g. Let f be a p-times continuously differentiable function on [a,b], and let L be a linear left general fractional differential operator such that L(f) is non-negative over a closed subinterval I of [a,b]. We find a sequence of polynomials Qₙ of degree ≤n such that L(Qₙ) is non-negative...

Design of Fractional Order Digital Differentiators and Integrators Using Indirect Discretization

Krishna, B., Reddy, K. (2008)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33, 93B51, 93C95 In this paper, design of fractional order digital differentiators and integrators using indirect discretization is presented. The proposed approach is based on using continued fraction expansion to find the rational approximation of the fractional order operator, s^α. The rational approximation thus obtained is discretized by using s to z transforms. The proposed approach is tested for differentiators and integrators...

Hybrid fractional integro-differential inclusions

Sotiris K. Ntouyas, Sorasak Laoprasittichok, Jessada Tariboon (2015)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we study an existence result for initial value problems for hybrid fractional integro-differential inclusions. A hybrid fixed point theorem for a sum of three operators due to Dhage is used. An example illustrating the obtained result is also presented.

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

Similarity:

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...

System of fractional differential equations with Erdélyi-Kober fractional integral conditions

Natthaphong Thongsalee, Sorasak Laoprasittichok, Sotiris K. Ntouyas, Jessada Tariboon (2015)

Open Mathematics

Similarity:

In this paper we study existence and uniqueness of solutions for a system consisting from fractional differential equations of Riemann-Liouville type subject to nonlocal Erdélyi-Kober fractional integral conditions. The existence and uniqueness of solutions is established by Banach’s contraction principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. Examples illustrating our results are also presented.

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.