On the Ergodic Theorem for Positive Linear Operators.
Eberhard Hopf (1960/61)
Journal für die reine und angewandte Mathematik
Similarity:
Eberhard Hopf (1960/61)
Journal für die reine und angewandte Mathematik
Similarity:
U. Krengel, M.A. Akcoglu (1981)
Journal für die reine und angewandte Mathematik
Similarity:
Gianni Dal Maso, Luciano Modica (1986)
Journal für die reine und angewandte Mathematik
Similarity:
Donald S. Ornstein (1975)
Publications mathématiques et informatique de Rennes
Similarity:
Joseph Rosenblatt (1981)
Mathematische Annalen
Similarity:
Nishishiraho, Toshihiko (1998)
Journal of Convex Analysis
Similarity:
Teresa Bermúdez, Manuel González, Mostafa Mbekhta (2000)
Studia Mathematica
Similarity:
We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.
A. Al-Hussaini (1974)
Annales Polonici Mathematici
Similarity:
Karl Petersen, Shizuo Kakutani (1981)
Monatshefte für Mathematik
Similarity:
Zbigniew S. Kowalski (1984)
Colloquium Mathematicae
Similarity:
Janusz Woś (1987)
Colloquium Mathematicae
Similarity:
A. Bensoussan, J. Frehse (1992)
Journal für die reine und angewandte Mathematik
Similarity:
G. Krupa (1998)
Studia Mathematica
Similarity:
Under different compactness assumptions pointwise and mean ergodic theorems for subadditive superstationary families of random sets whose values are weakly (or strongly) compact convex subsets of a separable Banach space are presented. The results generalize those of [14], where random sets in are considered. Techniques used here are inspired by [3].
Roland Zweimüller (2004)
Colloquium Mathematicae
Similarity:
We present a very quick and easy proof of the classical Stepanov-Hopf ratio ergodic theorem, deriving it from Birkhoff's ergodic theorem by a simple inducing argument.
Teresa Bermúdez, Manuel González, Mostafa Mbekhta (1998)
Extracta Mathematicae
Similarity: