Displaying similar documents to “Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domains”

On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation

Michal Křížek, Pekka Neittaanmäki (1989)

Aplikace matematiky

Similarity:

The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.

Solvability of a first order system in three-dimensional non-smooth domains

Michal Křížek, Pekka Neittaanmäki (1985)

Aplikace matematiky

Similarity:

A system of first order partial differential equations is studied which is defined by the divergence and rotation operators in a bounded nonsmooth domain Ω 𝐑 3 . On the boundary δ Ω , the vanishing normal component is prescribed. A variational formulation is given and its solvability is investigated.

Dual finite element analysis of axisymmetric elliptic problems with an absolute term

Ivan Hlaváček (1991)

Applications of Mathematics

Similarity:

A model second order elliptic equation in cylindrical coordinates with mixed boundary conditions is considered. A dual variational formulation is employed to calculate the cogradient of the solution directly. Approximations are defined on the basis of standard finite elements spaces. Convergence analysis and some a posteriori error estimates are presented.

A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media

María-Luisa Rapún, Francisco-Javier Sayas (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating...