Rings whose overrings are integrally closed in their complete quotient ring.
Norman Eggert (1976)
Journal für die reine und angewandte Mathematik
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Norman Eggert (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Peter Schenzel (1983)
Journal für die reine und angewandte Mathematik
Similarity:
James A. Huckaba, George W. Hinkle (1977)
Journal für die reine und angewandte Mathematik
Similarity:
Jan-Erik Björk (1971)
Journal für die reine und angewandte Mathematik
Similarity:
Charles Lanski, Attila Maróti (2013)
Open Mathematics
Similarity:
We give a comment to Theorem 1.1 published in our paper “Ring elements as sums of units” [Cent. Eur. J. Math., 2009, 7(3), 395–399].
Ricardo Salvati Manni (1986)
Journal für die reine und angewandte Mathematik
Similarity:
Bakkari, Chahrazade, Mahdou, Najib (2009)
Beiträge zur Algebra und Geometrie
Similarity:
C.D. Gay, G.C. Morris, I. Morris (1983)
Journal für die reine und angewandte Mathematik
Similarity:
Eliza Wajch (1988)
Colloquium Mathematicae
Similarity:
Guo, Xiaojiang, Shum, K.P. (2006)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Huanyin Chen, Miaosen Chen (2005)
Czechoslovak Mathematical Journal
Similarity:
It is shown that a ring is a -ring if and only if there exists a complete orthogonal set of idempotents such that all are -rings. We also investigate -rings for Morita contexts, module extensions and power series rings.