Displaying similar documents to “Shape optimization of an elasto-perfectly plastic body”

Shape optimization of elastoplastic bodies obeying Hencky's law

Ivan Hlaváček (1986)

Aplikace matematiky

Similarity:

A minimization of a cost functional with respect to a part of the boundary, where the body is fixed, is considered. The criterion is defined by an integral of a yield function. The principle of Haar-Kármán and piecewise constant stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.

Shape optimization of elasto-plastic axisymmetric bodies

Ivan Hlaváček (1991)

Applications of Mathematics

Similarity:

A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.

Shape optimization of elastic axisymmetric plate on an elastic foundation

Petr Salač (1995)

Applications of Mathematics

Similarity:

An elastic simply supported axisymmetric plate of given volume, fixed on an elastic foundation, is considered. The design variable is taken to be the thickness of the plate. The thickness and its partial derivatives of the first order are bounded. The load consists of a concentrated force acting in the centre of the plate, forces concentrated on the circle, an axisymmetric load and the weight of the plate. The cost functional is the norm in the weighted Sobolev space of the deflection...

Contact between elastic perfectly plastic bodies

Jaroslav Haslinger, Ivan Hlaváček (1982)

Aplikace matematiky

Similarity:

If the material of the bodies is elastic perfectly plastic, obeying the Hencky's law, the formulation in terms of stresses is more suitable than that in displacements. The Haar-Kármán principle is first extended to the case of a unilateral contact between two bodies without friction. Approximations are proposed by means of piecewise constant triangular finite elements. Convergence of the method is proved for any regular family of triangulations.