Shape optimization of elastoplastic bodies obeying Hencky's law
Aplikace matematiky (1986)
- Volume: 31, Issue: 6, page 486-499
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHlaváček, Ivan. "Shape optimization of elastoplastic bodies obeying Hencky's law." Aplikace matematiky 31.6 (1986): 486-499. <http://eudml.org/doc/15472>.
@article{Hlaváček1986,
abstract = {A minimization of a cost functional with respect to a part of the boundary, where the body is fixed, is considered. The criterion is defined by an integral of a yield function. The principle of Haar-Kármán and piecewise constant stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.},
author = {Hlaváček, Ivan},
journal = {Aplikace matematiky},
keywords = {optimal design; shape optimization; two dimensional elasto-plastic bodies; Hencky’s law; minimum of cost functional; convergence; existence of an optimal boundary; variational inequality; optimal design; shape optimization; two dimensional elasto-plastic bodies; Hencky's law; minimum of cost functional; convergence; existence of an optimal boundary},
language = {eng},
number = {6},
pages = {486-499},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Shape optimization of elastoplastic bodies obeying Hencky's law},
url = {http://eudml.org/doc/15472},
volume = {31},
year = {1986},
}
TY - JOUR
AU - Hlaváček, Ivan
TI - Shape optimization of elastoplastic bodies obeying Hencky's law
JO - Aplikace matematiky
PY - 1986
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 31
IS - 6
SP - 486
EP - 499
AB - A minimization of a cost functional with respect to a part of the boundary, where the body is fixed, is considered. The criterion is defined by an integral of a yield function. The principle of Haar-Kármán and piecewise constant stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.
LA - eng
KW - optimal design; shape optimization; two dimensional elasto-plastic bodies; Hencky’s law; minimum of cost functional; convergence; existence of an optimal boundary; variational inequality; optimal design; shape optimization; two dimensional elasto-plastic bodies; Hencky's law; minimum of cost functional; convergence; existence of an optimal boundary
UR - http://eudml.org/doc/15472
ER -
References
top- D. Bégis R. Glowinski, 10.1007/BF01447854, Appl. Math. & Optimization, Vol. 2, 1975, 130-169. (1975) MR0443372DOI10.1007/BF01447854
- G. Duvaut J. L. Lions, Les inéquations en mécanique et en physique, Paris, Dunod 1972. (1972) MR0464857
- R. Falk B. Mercier, Estimation d'erreur en élasto-plasticité, C.R. Acad. Sc. Paris, 282, A, (1976), 645-648. (1976) MR0426575
- R. Falk B. Mercier, Error estimates for elasto-plastic problems, R.A.I.R.O. Anal. Numer., 11 (1977), 135-144. (1977) MR0449119
- I. Hlaváček, A finite element analysis for elasto-plastic bodies obeying Hencky's law, Appl. Mat. 26 (1981), 449-461. (1981) Zbl0467.73096MR0634282
- B. Mercier, Sur la théorie et l'analyse numérique de problèmes de plasticité, Thesis, Université Paris VI, 1977. (1977) MR0502686
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Praha 1967. (1967) MR0227584
Citations in EuDML Documents
top- Zdeněk Kestřánek, Numerical analysis for optimal shape design in elliptic boundary value problems
- Ivan Hlaváček, Shape optimization of an elasto-perfectly plastic body
- Vladislav Pištora, Shape optimization of an elasto-plastic body for the model with strain- hardening
- Ivan Hlaváček, Shape optimization of elasto-plastic axisymmetric bodies
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.