Displaying similar documents to “Classical Solutions of Nonlinear Schrödinger Equations.”

Numerical study of self-focusing solutions to the Schrödinger-Debye system

Christophe Besse, Brigitte Bidégaray (2010)

ESAIM: Mathematical Modelling and Numerical Analysis


In this article we implement different numerical schemes to simulate the Schrödinger-Debye equations that occur in nonlinear optics. Since the existence of blow-up solutions is an open problem, we try to compute such solutions. The convergence of the methods is proved and simulations seem indeed to show that for at least small delays self-focusing solutions may exist.

Semiclassical states for weakly coupled nonlinear Schrödinger systems

Eugenio Montefusco, Benedetta Pellacci, Marco Squassina (2008)

Journal of the European Mathematical Society


We consider systems of weakly coupled Schrödinger equations with nonconstant potentials and investigate the existence of nontrivial nonnegative solutions which concentrate around local minima of the potentials. We obtain sufficient and necessary conditions for a sequence of least energy solutions to concentrate.

Nonlinear Schrödinger equation on four-dimensional compact manifolds

Patrick Gérard, Vittoria Pierfelice (2010)

Bulletin de la Société Mathématique de France


We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadratic nonlinearities as well as a necessary and sufficient condition of global well-posedness...

Bilinear virial identities and applications

Fabrice Planchon, Luis Vega (2009)

Annales scientifiques de l'École Normale Supérieure


We prove bilinear virial identities for the nonlinear Schrödinger equation, which are extensions of the Morawetz interaction inequalities. We recover and extend known bilinear improvements to Strichartz inequalities and provide applications to various nonlinear problems, most notably on domains with boundaries.