The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Graded Lie Algebras of depth one.”

Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras

Johannes Huebschmann (2000)

Banach Center Publications

Similarity:

Twilled L(ie-)R(inehart)-algebras generalize, in the Lie-Rinehart context, complex structures on smooth manifolds. An almost complex manifold determines an "almost twilled pre-LR algebra", which is a true twilled LR-algebra iff the almost complex structure is integrable. We characterize twilled LR structures in terms of certain associated differential (bi)graded Lie and G(erstenhaber)-algebras; in particular the G-algebra arising from an almost complex structure is a (strict) d(ifferential)...

Homotopy Lie algebras and fundamental groups via deformation theory

Martin Markl, Stefan Papadima (1992)

Annales de l'institut Fourier

Similarity:

We formulate first results of our larger project based on first fixing some easily accessible invariants of topological spaces (typically the cup product structure in low dimensions) and then studying the variations of more complex invariants such as π * Ω S (the homotopy Lie algebra) or gr * π 1 S (the graded Lie algebra associated to the lower central series of the fundamental group). We prove basic rigidity results and give also an application in low-dimensional topology.

On the adjoint map of homotopy abelian DG-Lie algebras

Donatella Iacono, Marco Manetti (2019)

Archivum Mathematicum

Similarity:

We prove that a differential graded Lie algebra is homotopy abelian if its adjoint map into its cochain complex of derivations is trivial in cohomology. The converse is true for cofibrant algebras and false in general.