Displaying similar documents to “On Ample and spanned Rank-3 Bundles with Low Chern numbers.”

Rank 4 vector bundles on the quintic threefold

Carlo Madonna (2005)

Open Mathematics

Similarity:

By the results of the author and Chiantini in [3], on a general quintic threefold X⊂P 4 the minimum integer p for which there exists a positive dimensional family of irreducible rank p vector bundles on X without intermediate cohomology is at least three. In this paper we show that p≤4, by constructing series of positive dimensional families of rank 4 vector bundles on X without intermediate cohomology. The general member of such family is an indecomposable bundle from the extension...

On Buchsbaum bundles on quadric hypersurfaces

Edoardo Ballico, Francesco Malaspina, Paolo Valabrega, Mario Valenzano (2012)

Open Mathematics

Similarity:

Let E be an indecomposable rank two vector bundle on the projective space ℙn, n ≥ 3, over an algebraically closed field of characteristic zero. It is well known that E is arithmetically Buchsbaum if and only if n = 3 and E is a null-correlation bundle. In the present paper we establish an analogous result for rank two indecomposable arithmetically Buchsbaum vector bundles on the smooth quadric hypersurface Q n ⊂ ℙn+1, n ≥ 3. We give in fact a full classification and prove that n must...

Rank-two vector bundles on Hirzebruch surfaces

Marian Aprodu, Vasile Brînzănescu, Marius Marchitan (2012)

Open Mathematics

Similarity:

We survey some parts of the vast literature on vector bundles on Hirzebruch surfaces, focusing on the rank-two case.