Displaying similar documents to “Homotopy nilpotent Lie groups have no torsion in homology.”

Homotopy Invariance of Transverse Homology Functors

Sara Dragotti, Gaetano Magro, Lucio Parlato (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

We construct, here, transverse homology functors, and we prove their invariance with respect to a suitable definition of homotopy.

Nilpotent subgroups of the group of fibre homotopy equivalences.

Yves Félix, Jean-Claude Thomas (1995)

Publicacions Matemàtiques

Similarity:

Let ξ = (E, p, B, F) be a Hurewicz fibration. In this paper we study the space L(ξ) consisting of fibre homotopy self equivalences of ξ inducing by restriction to the fibre a self homotopy equivalence of F belonging to the group G. We give in particular conditions implying that π(L(ξ)) is finitely generated or that L(ξ) has the same rational homotopy type as aut(F).

Miller spaces and spherical resolvability of finite complexes

Jeffrey Strom (2003)

Fundamenta Mathematicae

Similarity:

Let 𝒜 be a fixed collection of spaces, and suppose K is a nilpotent space that can be built from spaces in 𝒜 by a succession of cofiber sequences. We show that, under mild conditions on the collection 𝒜, it is possible to construct K from spaces in 𝒜 using, instead, homotopy (inverse) limits and extensions by fibrations. One consequence is that if K is a nilpotent finite complex, then ΩK can be built from finite wedges of spheres using homotopy limits and extensions by fibrations....

Nilpotent complex structures.

Luis A. Cordero, Marisa Fernández, Alfred Gray, Luis Ugarte (2001)

RACSAM

Similarity:

Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.