Intrinsic volumes and f-vectors of random polytopes.
Imre Bárány (1989)
Mathematische Annalen
Similarity:
Imre Bárány (1989)
Mathematische Annalen
Similarity:
J.A. Wieacker, F. Affentranger (1991)
Discrete & computational geometry
Similarity:
G. Ewald, G.C. Shephard (1974)
Mathematische Annalen
Similarity:
Alon, N., Kleitman, D.J. (1997)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Peter M. Gruber (1988)
Mathematische Annalen
Similarity:
Breen, Marilyn (2010)
Beiträge zur Algebra und Geometrie
Similarity:
J. Fine (1995)
Discrete & computational geometry
Similarity:
Peter M. Gruber (1996)
Manuscripta mathematica
Similarity:
J. Matousek, O. Schwarzkopf (1993)
Discrete & computational geometry
Similarity:
Rolf Schneider (2008)
Bollettino dell'Unione Matematica Italiana
Similarity:
This is a survey over recent asymptotic results on random polytopes in d-dimensional Euclidean space. Three ways of generating a random polytope are considered: convex hulls of finitely many random points, projections of a fixed high-dimensional polytope into a random d-dimensional subspace, intersections of random closed halfspaces. The type of problems for which asymptotic results are described is different in each case.
Bezdek, K., Hausel, T. (1994)
Beiträge zur Algebra und Geometrie
Similarity:
Z. Füredi (1986)
Discrete & computational geometry
Similarity:
Panina, Gaiane (2008)
Beiträge zur Algebra und Geometrie
Similarity:
G. Panina (2003)
Open Mathematics
Similarity:
All 3-dimensional convex polytopes are known to be rigid. Still their Minkowski differences (virtual polytopes) can be flexible with any finite freedom degree. We derive some sufficient rigidity conditions for virtual polytopes and present some examples of flexible ones. For example, Bricard's first and second flexible octahedra can be supplied by the structure of a virtual polytope.