Results in L..(...) for the Schrödinger equation with a time-dependent potential.
Arne Jensen (1994)
Mathematische Annalen
Similarity:
Arne Jensen (1994)
Mathematische Annalen
Similarity:
Bernard Helffer, Heinz Siedentop (1995)
Mathematische Zeitschrift
Similarity:
Tuan Duong, Anh (2012)
Serdica Mathematical Journal
Similarity:
2010 Mathematics Subject Classification: 81Q20 (35P25, 81V10). The purpose of this paper is to study the Schrödinger operator P(B,w) = (Dx-By^2+Dy^2+w^2x^2+V(x,y),(x,y) О R^2, with the magnetic field B large enough and the constant w № 0 is fixed and proportional to the strength of the electric field. Under certain assumptions on the potential V, we prove the existence of resonances near Landau levels as B®Ґ. Moreover, we show that the width of resonances is of size O(B^-Ґ). ...
B. Simon (1973)
Mathematische Annalen
Similarity:
Giuseppe Maria Coclite (2002)
Annales Polonici Mathematici
Similarity:
We prove the existence of a sequence of radial solutions with negative energy of the Schrödinger-Maxwell equations under the action of a negative potential.
W.D. Evans (1981)
Mathematische Annalen
Similarity:
Minoru Murata (1990)
Mathematische Annalen
Similarity:
M. Hoffmann-Ostenhof (1988)
Mathematische Zeitschrift
Similarity:
Barry Simon (1973)
Mathematische Zeitschrift
Similarity:
Zhengping Wang, Huan-Song Zhou (2009)
Journal of the European Mathematical Society
Similarity:
Nakao Hayashi, Tohru Ozawa (1988/89)
Mathematische Zeitschrift
Similarity:
S. A. Denisov (2010)
Mathematical Modelling of Natural Phenomena
Similarity:
In this short note, we apply the technique developed in [Math. Model. Nat. Phenom., 5 (2010), No. 4, 122-149] to study the long-time evolution for Schrödinger equation with slowly decaying potential.
W. Hansen, A. Boukricha (1994)
Mathematische Annalen
Similarity:
Qihong Shi, Yaqian Jia, Jianwei Yang (2024)
Applications of Mathematics
Similarity:
We investigate the Cauchy problem of the one dimensional Maxwell-Schrödinger (MS) system under the Lorenz gauge condition. Different from the classical case, we consider the electromagnetic and electrostatic potentials which are growing at space infinity. More precisely, the electrostatic potential is allowed to grow linearly, while for the electromagnetic potential the growth is sublinear. Based on the energy estimates and the gauge transformation, we prove the global existence and...
Arne Jensen (1986)
Mathematische Zeitschrift
Similarity: