Essential Self-Adjointness of Schrödinger Operators with Positive Potentials.

B. Simon

Mathematische Annalen (1973)

  • Volume: 201, page 211-220
  • ISSN: 0025-5831; 1432-1807/e

How to cite

top

Simon, B.. "Essential Self-Adjointness of Schrödinger Operators with Positive Potentials.." Mathematische Annalen 201 (1973): 211-220. <http://eudml.org/doc/162387>.

@article{Simon1973,
author = {Simon, B.},
journal = {Mathematische Annalen},
pages = {211-220},
title = {Essential Self-Adjointness of Schrödinger Operators with Positive Potentials.},
url = {http://eudml.org/doc/162387},
volume = {201},
year = {1973},
}

TY - JOUR
AU - Simon, B.
TI - Essential Self-Adjointness of Schrödinger Operators with Positive Potentials.
JO - Mathematische Annalen
PY - 1973
VL - 201
SP - 211
EP - 220
UR - http://eudml.org/doc/162387
ER -

Citations in EuDML Documents

top
  1. H. Brezis, Quelques propriétés de l’opérateur de Schrödinger - Δ + V
  2. M. Combescure-Moulin, J. Ginibre, Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials
  3. V. F. Kovalenko, Yu. A. Semenov, Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials
  4. Mikhail Shubin, Essential self-adjointness for magnetic Schrödinger operators on non-compact manifolds
  5. Richard C. Brown, Don B. Hinton, Two separation criteria for second order ordinary or partial differential operators

NotesEmbed ?

top

You must be logged in to post comments.