Essential Self-Adjointness of Schrödinger Operators with Positive Potentials.
Mathematische Annalen (1973)
- Volume: 201, page 211-220
- ISSN: 0025-5831; 1432-1807/e
Access Full Article
topHow to cite
topSimon, B.. "Essential Self-Adjointness of Schrödinger Operators with Positive Potentials.." Mathematische Annalen 201 (1973): 211-220. <http://eudml.org/doc/162387>.
@article{Simon1973,
author = {Simon, B.},
journal = {Mathematische Annalen},
pages = {211-220},
title = {Essential Self-Adjointness of Schrödinger Operators with Positive Potentials.},
url = {http://eudml.org/doc/162387},
volume = {201},
year = {1973},
}
TY - JOUR
AU - Simon, B.
TI - Essential Self-Adjointness of Schrödinger Operators with Positive Potentials.
JO - Mathematische Annalen
PY - 1973
VL - 201
SP - 211
EP - 220
UR - http://eudml.org/doc/162387
ER -
Citations in EuDML Documents
top- H. Brezis, Quelques propriétés de l’opérateur de Schrödinger
- M. Combescure-Moulin, J. Ginibre, Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials
- V. F. Kovalenko, Yu. A. Semenov, Essential self-adjointness of many-particle hamiltonian operators of Schrödinger type with singular two-particle potentials
- Mikhail Shubin, Essential self-adjointness for magnetic Schrödinger operators on non-compact manifolds
- Richard C. Brown, Don B. Hinton, Two separation criteria for second order ordinary or partial differential operators
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.