Boundary value problems of linear elastostatics and hydrostatics on Lipschitz domains
Carlos E. Kenig (1983-1984)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Carlos E. Kenig (1983-1984)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Jörgen Löfström (1968)
Mathematica Scandinavica
Similarity:
Thomas G. McLaughlin (1962)
Mathematica Scandinavica
Similarity:
Ding Hua (1989)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Carlos E. Kenig (1984-1985)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Björn E. J. Dahlberg, C. E. Kenig, G. C. Verchota (1986)
Annales de l'institut Fourier
Similarity:
In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator , on an arbitrary bounded Lipschitz domain in . We establish existence and uniqueness results when the boundary values have first derivatives in , and the normal derivative is in . The resulting solution takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of is shown to be in .
John Erik Fornaess (1983)
Mathematica Scandinavica
Similarity:
Pascal Auscher, Philippe Tchamitchian (1999)
Publicacions Matemàtiques
Similarity:
We prove a commutator inequality of Littlewood-Paley type between partial derivatives and functions of the Laplacian on a Lipschitz domain which gives interior energy estimates for some BVP. It can be seen as an endpoint inequality for a family of energy estimates.
J.-B. Hiriart-Urruty (1980)
Mathematica Scandinavica
Similarity:
Hans Wallin (1966)
Mathematica Scandinavica
Similarity: