A Note on Contraproduction Domains.
Thomas G. McLaughlin (1962)
Mathematica Scandinavica
Similarity:
Thomas G. McLaughlin (1962)
Mathematica Scandinavica
Similarity:
Erik Low, John E. Fornaess (1986)
Mathematica Scandinavica
Similarity:
Berit Stensones (1989)
Mathematica Scandinavica
Similarity:
John Erik Fornaess (1983)
Mathematica Scandinavica
Similarity:
Łukasz Kosiński (2007)
Annales Polonici Mathematici
Similarity:
A complete characterization of proper holomorphic mappings between domains from the class of all pseudoconvex Reinhardt domains in ℂ² with the logarithmic image equal to a strip or a half-plane is given.
Łukasz Kosiński (2009)
Annales Polonici Mathematici
Similarity:
Hyeseon Kim, Atsushi Yamamori (2018)
Czechoslovak Mathematical Journal
Similarity:
We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.
Krantz, Steven G. (2010)
International Journal of Mathematics and Mathematical Sciences
Similarity:
P. Pflug, M. Jarnicki (1985)
Annales Polonici Mathematici
Similarity:
Jevtić, Miroljub (1997)
Matematichki Vesnik
Similarity:
Frank Jr. Beatrous (1986)
Mathematische Zeitschrift
Similarity:
Erik Low (1985)
Mathematische Zeitschrift
Similarity:
Gilberto Dini, Angela Selvaggi Primicerio (1988)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
François Berteloot (1991)
Studia Mathematica
Similarity:
We prove the Hölder continuity for proper holomorphic mappings onto certain piecewise smooth pseudoconvex domains with "good" plurisubharmonic peak functions at each point of their boundaries. We directly obtain a quite precise estimate for the exponent from an attraction property for analytic disks. Moreover, this way does not require any consideration of infinitesimal metric.
William S. Cohn (1993)
Mathematica Scandinavica
Similarity: