Displaying similar documents to “Concerning spectral characterizations of the radical in Banach algebras”

Raising bounded groups and splitting of radical extensions of commutative Banach algebras

W. Bade, P. Curtis, A. Sinclair (2000)

Studia Mathematica

Similarity:

Let A be a commutative unital Banach algebra and let A/ℛ be the quotient algebra of A modulo its radical ℛ. This paper is concerned with raising bounded groups in A/ℛ to bounded groups in the algebra A. The results will be applied to the problem of splitting radical extensions of certain Banach algebras.

Commutators of quasinilpotents and invariant subspaces

A. Katavolos, C. Stamatopoulos (1998)

Studia Mathematica

Similarity:

It is proved that the set Q of quasinilpotent elements in a Banach algebra is an ideal, i.e. equal to the Jacobson radical, if (and only if) the condition [Q,Q] ⊆ Q (or a similar condition concerning anticommutators) holds. In fact, if the inner derivation defined by a quasinilpotent element p maps Q into itself then p ∈ Rad A. Higher commutator conditions of quasinilpotents are also studied. It is shown that if a Banach algebra satisfies such a condition, then every quasinilpotent element...

Spectral characterizations of central elements in Banach algebras

Matej Brešar, Peter Šemrl (1996)

Studia Mathematica

Similarity:

Let A be a complex unital Banach algebra. We characterize elements belonging to Γ(A), the set of elements central modulo the radical. Our result extends and unifies several known characterizations of elements in Γ(A).