The Changes of Sign of Fractional Integrals.
John Steinig (1970)
Mathematische Zeitschrift
Similarity:
John Steinig (1970)
Mathematische Zeitschrift
Similarity:
R.K. Saxena (1967)
Mathematische Zeitschrift
Similarity:
Gupta, V.G., Shrama, Bhavna, Kiliçman, Adem (2010)
Journal of Applied Mathematics
Similarity:
Roop Narain Kesarwani (1967)
Mathematische Zeitschrift
Similarity:
Nikolova, Yanka (2012)
Mathematica Balkanica New Series
Similarity:
MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45 We consider a generalization of the classical Mellin transformation, called α-Mellin transformation, with an arbitrary (fractional) parameter α > 0. Here we continue the presentation from the paper [5], where we have introduced the definition of the α-Mellin transform and some of its basic properties. Some examples of special cases are provided. Its operational properties as Theorem 1, Theorem 2 (Convolution theorem) and Theorem...
Roop Narain Kesarwani (1968)
Mathematische Zeitschrift
Similarity:
Kumar, Dilip, Kilbas, Anatoly (2010)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99 The fractional calculus of the P-transform or pathway transform which is a generalization of many well known integral transforms is studied. The Mellin and Laplace transforms of a P-transform are obtained. The composition formulae for the various fractional operators such as Saigo operator, Kober operator and Riemann-Liouville fractional integral and differential operators with P-transform are proved. Application of the P-transform...
R.K. Saxena, S.L. Bora (1971)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Huang, F. (2009)
Journal of Applied Mathematics
Similarity:
Li-Li Liu, Jun-Sheng Duan (2015)
Open Mathematics
Similarity:
In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case...
Samuel, M., Thomas, Anitha (2010)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 26A33, 33E12, 33C60, 35R11 In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.
N. C. Jain (1970)
Annales Polonici Mathematici
Similarity:
Kiryakova, Virginia (2011)
Union of Bulgarian Mathematicians
Similarity:
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата. ...