Displaying similar documents to “On the Navier-Stokes Equations in Non-Cylindrical Domains: On the Existence and Regularity.”

Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping

Kwang-Ok Li, Yong-Ho Kim (2023)

Applications of Mathematics

Similarity:

This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids. ...

Regularity properties of the attractor to the Navier-Stokes equations

Piotr Kacprzyk (2010)

Applicationes Mathematicae

Similarity:

Existence of a global attractor for the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe has been shown already. In this paper we prove the higher regularity of the attractor.

The Stokes system in the incompressible case-revisited

Rainer Picard (2008)

Banach Center Publications

Similarity:

The classical Stokes system is reconsidered and reformulated in a functional analytical setting allowing for low regularity of the data and the boundary. In fact the underlying domain can be any non-empty open subset Ω of ℝ³. A suitable solution concept and a corresponding solution theory is developed.

Linear flow problems in 2D exterior domains for 2D incompressible fluid flows

Paweł Konieczny (2008)

Banach Center Publications

Similarity:

The paper analyzes the issue of existence of solutions to linear problems in two dimensional exterior domains, linearizations of the Navier-Stokes equations. The systems are studied with a slip boundary condition. The main results prove the existence of distributional solutions for arbitrary data.

Lagrangian approximations and weak solutions of the Navier-Stokes equations

Werner Varnhorn (2008)

Banach Center Publications

Similarity:

The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles...