k-Homogeneous Groups.
William M. Kantor (1972)
Mathematische Zeitschrift
Similarity:
William M. Kantor (1972)
Mathematische Zeitschrift
Similarity:
William M. Kantor (1968)
Mathematische Zeitschrift
Similarity:
William M. Kantor (1969)
Mathematische Zeitschrift
Similarity:
Dugald Macpherson (1996)
Forum mathematicum
Similarity:
Jan van Mill (2011)
Fundamenta Mathematicae
Similarity:
We prove that if a space X is countable dense homogeneous and no set of size n-1 separates it, then X is strongly n-homogeneous. Our main result is the construction of an example of a Polish space X that is strongly n-homogeneous for every n, but not countable dense homogeneous.
Susana Torrezão de Sousa, J. K. Truss
Similarity:
We give a classification of all the countable homogeneous coloured partial orders. This generalizes the similar result in the monochromatic case given by Schmerl.
Jan van Mill (2005)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We present an example of a connected, Polish, countable dense homogeneous space X that is not strongly locally homogeneous. In fact, a nontrivial homeomorphism of X is the identity on no nonempty open subset of X.
Arhangel’skii, Alexander, Choban, Mitrofan, Mihaylova, Ekaterina (2012)
Union of Bulgarian Mathematicians
Similarity:
Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова - Въведени са понятията o-хомогенно пространство, lo-хомогенно пространство, do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако lo-хомогенно пространство X има отворено подпространство, което е q-пълно, то и самото X е q-пълно. Показано е, че ако lo-хомогенно пространство X съдържа навсякъде гъсто екстремално несвързано подпространство, тогава X е екстремално несвързано. In this paper...
Wolfgang Ziller (1976/77)
Mathematische Zeitschrift
Similarity:
Gilbert, Cannonito, F.B. Baumslag (1980)
Mathematische Zeitschrift
Similarity:
John S. Wilson (1980)
Mathematische Zeitschrift
Similarity:
Jan van Mill (2008)
Fundamenta Mathematicae
Similarity:
We show that there is a Polish space which is countable dense homogeneous but contains a dense open rigid connected subset. This answers several questions of Fitzpatrick and Zhou.
D. Basile, Angelo Bella (2009)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space , every remainder of is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel’skii cannot be extended to homogeneous spaces.