Some applications of bifurcation theory to ordinary differential equations of the fourth order
Jolanta Przybycin (1991)
Annales Polonici Mathematici
Similarity:
Jolanta Przybycin (1991)
Annales Polonici Mathematici
Similarity:
Stewart Welsh (1998)
Colloquium Mathematicae
Similarity:
Jolanta Przybycin (1989)
Annales Polonici Mathematici
Similarity:
Walter Dambrosio (2000)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Jolanta Przybycin (1999)
Annales Polonici Mathematici
Similarity:
We give a sufficient condition for [μ-M, μ+M] × {0} to be a bifurcation interval of the equation u = L(λu + F(u)), where L is a linear symmetric operator in a Hilbert space, μ ∈ r(L) is of odd multiplicity, and F is a nonlinear operator. This abstract result provides an elementary proof of the existence of bifurcation intervals for some eigenvalue problems with nondifferentiable nonlinearities. All the results obtained may be easily transferred to the case of bifurcation from infinity. ...
Covadonga Blanco García, Carmen Rodríguez Iglesias (1987)
Extracta Mathematicae
Similarity:
W. K. Kordylewski (1982)
Applicationes Mathematicae
Similarity: