The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On a problem of J. Nagata”

Covering properties in countable products, II

Sachio Higuchi, Hidenori Tanaka (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we discuss covering properties in countable products of Čech-scattered spaces and prove the following: (1) If Y is a perfect subparacompact space and { X n : n ω } is a countable collection of subparacompact Čech-scattered spaces, then the product Y × n ω X n is subparacompact and (2) If { X n : n ω } is a countable collection of metacompact Čech-scattered spaces, then the product n ω X n is metacompact.

Monotone weak Lindelöfness

Maddalena Bonanzinga, Filippo Cammaroto, Bruno Pansera (2011)

Open Mathematics

Similarity:

The definition of monotone weak Lindelöfness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelöf if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) ∪r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelöf spaces are given and some basic properties such as the behavior with respect to products and...