Displaying similar documents to “Impact of the variations of the mixing length in a first order turbulent closure system”

Relaxation of singular functionals defined on Sobolev spaces

Hafedh Ben Belgacem (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper, we consider a Borel measurable function on the space of m × n matrices f : M m × n ¯ taking the value + , such that its rank-one-convex envelope R f is finite and satisfies for some fixed p > 1 : - c 0 R f ( F ) c ( 1 + F p ) for all F M m × n , where c , c 0 > 0 . Let Ø be a given regular bounded open domain of n . We define on W 1 , p ( Ø ; m ) the functional I ( u ) = Ø f ( u ( x ) ) d x . Then, under some technical restrictions on f , we show that the relaxed functional I ¯ for the weak topology of W 1 , p ( Ø ; m ) has the integral representation: I ¯ ( u ) = Ø Q [ R f ] ( u ( x ) ) d x , where for a given function g , Q g denotes...

Threshold Circuits for Iterated Matrix Product and Powering

Carlo Mereghetti, Beatrice Palano (2010)

RAIRO - Theoretical Informatics and Applications

Similarity:

The complexity of computing, via threshold circuits, the and of fixed-dimension k × k matrices with integer or rational entries is studied. We call these two problems 𝖨𝖬𝖯 𝗄 and 𝖬𝖯𝖮𝖶 𝗄 , respectively, for short. We prove that: (i) For k 2 , 𝖨𝖬𝖯 𝗄 does not belong to TC 0 , unless TC 0 = NC 1 .newline (ii) For : 𝖨𝖬𝖯 2 belongs to TC 0 while, for k 3 , 𝖨𝖬𝖯 𝗄 does not belong to TC 0 , unless TC 0 = NC 1 . (iii) For any , 𝖬𝖯𝖮𝖶 𝗄 belongs to TC 0 .

Equi-integrability results for 3D-2D dimension reduction problems

Marian Bocea, Irene Fonseca (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients α u ε | 1 ε 3 u ε bounded in L p ( Ω ; 9 ) , 1 < p < + . Here it is shown that, up to a subsequence, u ε may be decomposed as w ε + z ε , where z ε carries all the concentration effects, α w ε | 1 ε 3 w ε p is equi-integrable, and w ε captures the oscillatory behavior, z ε 0 in measure. In addition, if { u ε } is a recovering sequence then z ε = z ε ( x α ) nearby Ω .